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Abstract—Web link analysis methods such as PageRank, HITS, and SALSA have focused on obtaining global popularity or authority

of the set of Web pages in question. Although global popularity is useful for general queries, we find that global popularity is not as

useful for queries in which the global population has less knowledge of. By examining the many different communities that appear
within a Web page graph, we are able to compute the popularity or authority from a specific community. Multiresolution popularity lists

allow us to observe the popularity of Web pages with respect to communities at different resolutions within the Web. Multiresolution
popularity lists have been shown to have high potential when compared against PageRank. In this paper, we generalize the

multiresolution popularity analysis to use any form of Web page link relations. We provide results for both the PageRank relations and
the In-degree relations. By utilizing the multiresolution popularity lists, we achieve a 13 percent and 25 percent improvement in mean

average precision over In-degree and PageRank, respectively.

Index Terms—Symmetric nonnegative matrix factorization, PageRank, SALSA, in-degree, Web link analysis.
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1 INTRODUCTION

WHEN searching the Web, it is common to find that
information of interest to the majority of the popula-

tion can be easily found, but specialized information requires
more effort in the form of many query reformulations until
the desired information is located or the search is abandoned.

The ranked list of Web pages provided by a search
engine is computed based on the similarity of the provided
query to each Web page, where the Web page with the
greatest similarity score is ranked first. Many features of the
Web page and the Web are used to compute the similarity
score. One important feature that is directly related to the
popularity of the Web page is the Web link analysis score.

The Web link analysis score of a page depends on the links
to and from the page and therefore is a measure of the
popularity of the page. Hence, the Web link analysis score is
high for pages of general interest (having high popularity)
and low for pages of specialized interest (having low
popularity).

Web link analysis has the form of variants of PageRank
[1], HITS [2], and SALSA [3].

PageRank is a method of global link analysis that provides
a score to every page on the Web determined by the
PageRank score of the pages linking to them. By using
PageRank, we measure the importance of a page in terms of
its global popularity; by global popularity, we mean that it is
popular relative to the population of Web pages. This implies

that pages that concern topics that are popular to only a small
population will not receive a high PageRank score. For
example, a search for toasters will usually present pages from
Websites such as amazon.com when using PageRank due to
the high global popularity of the site’s pages. Pages from sites
specializing in toasters would have high local popularity
within the “toaster specialist” population, but since these
specialist sites do not have a high global popularity, they
would not appear within the top search results.

HITS and SALSA are link analysis methods that use only
those Web pages that are relevant to the query and the set of
neighboring Web pages. By performing the link analysis on
only a small subset of the Web, HITS and SALSA provide a
more focused link analysis than PageRank, but as in
PageRank, they provide an authority score based on the
global consensus of all of the chosen Web pages. This implies
that if a Web page from any globally popular site appears in
the list of query results, it is likely to obtain the highest rank.

Recent work [4] has shown how we can decompose the
Web link graph used by PageRank into multiple popularity
lists, where each popularity list comes from a certain
resolution of the Web and is focused on a certain interest.
The popularity list with the lowest resolution is equivalent
to PageRank, since PageRank computes global popularity.
The popularity lists with higher resolutions establish a
version of PageRank that is local to some community within
the Web. It was shown that by using multiresolution
popularity lists, a significant increase in retrieval precision
can be obtained over PageRank.

A recent study comparing the effectiveness of various
link analysis methods [5] showed that SALSA and simple
in-degree counts provided better page rankings than
PageRank and HITS. In this paper, we introduce a method
of computing multiresolution popularity lists for any given
method of link analysis that can be represented in the form
of a set of Web page relations. This includes PageRank,
HITS, SALSA, and In-degree.
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This paper provides the following major contributions:

. A generalized method of computing multiresolution
community popularity lists for any given set of Web
page relations (Section 2).

. An analysis of the feature vectors produced when
performing our multiresolution analysis and a
discussion of their relationship to the relational link
matrix (Sections 2.2, 2.3, and 2.4).

. A comparison between the effectiveness of multi-
resolution popularity lists based on PageRank and
in-degree (Section 3).

. A new open problem regarding the optimal selection
of a multiresolution community popularity list when
given a query (Section 3.3).

This paper will proceed as follows: Section 2 describes
the multiresolution link analysis process and shows how we
are able to decompose any relational link matrix into a set of
feature vectors for our Web pages. Section 3 examines the
effect of our multiresolution link analysis decomposition
and selection on the PageRank relational link matrix and the
In-degree relational link matrix.

2 MULTIRESOLUTION LINK ANALYSIS

Link analysis on the Web is the method of using the
information about which pages link to other pages, in an
attempt to improve search results or gain insight into the
structure of the Web. In this section, we will examine a
deeper form of link analysis called multiresolution link
analysis.

2.1 Multiresolution Communities

A community is a collection of people that have a common
interest. Most people belong to many communities and most
communities have more than one person belonging to them,
so it is a many-to-many relationship. The specificity of the
interest that binds the community determines the size of the
community. If the interest is very broad, then the commu-
nity will contain many members; on the other hand, if the
interest is very specific, then the community will contain
few members.

This implies that every community of more than one
person contains subcommunities specializing in some
interest within the community, where the broadest com-
munity is the set of all people and the narrowest
community is the community of one person. Therefore,
each community is defined by its type of interest and the
resolution of the interest. The lowest resolution community
would focus on issues that affect the whole population,
while a higher resolution community would focus on more
specialized issues. Note that even though each of the
communities at each resolution has a common interest, they
still have an opinion of items of which they have no interest.

2.1.1 An Example of Community Resolutions

The example in Fig. 2, shows the Cricket1 community, the
smaller Indoor Cricket community contained within the
Cricket community, and the Indoor Cricket strategy
community contained within the Indoor Cricket commu-
nity. The consensus of each of these communities provides
us with the popularity of cricket articles a to g with respect
to three resolutions of the cricketing community shown in
Fig. 1. We will now discuss these resolutions in depth.

The lowest resolution, labeled “Cricket,” contains the
popularity with respect to the largest community, having
the most general knowledge. If we had no knowledge of the
game of cricket and we wanted basic knowledge such as
how and where it is played, we would choose the paper that
is most popular to this community.

If instead, we were interested in knowing more about the
rules of indoor cricket (a more specific interest), the articles
that are most popular to the cricket community would not
be as useful. The majority of the population within the
cricket community would know about indoor cricket, but
not have a detailed understanding of it (most would know
that it is played indoor, but not know the specifics of the
rules). Therefore, to obtain knowledge of the rules of indoor
cricket, we must increase the resolution of the community
that we are receiving advice from (to a finer resolution), and
thus choose the paper that is most popular to the indoor
cricket community.

Now that we know the rules and want to start playing
indoor cricket, we should equip ourselves with knowledge
of the strategy that is used to try to win a game of indoor
cricket. To do so, we must increase the resolution of the
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Fig. 1. An example of the popularity of seven books (labeled a to g) with
respect to three different resolutions of the cricketing community (the
lowest resolution being the general cricket community, the second
resolution being the general indoor cricket community, and the third
resolution being the indoor cricket community strategists). We can see
that the popularity of each book is dependent on the community.

Fig. 2. Three resolutions of the Cricket community. The lowest resolution
contains those interested in cricket, while the highest resolution contains
those who are interested in Indoor Cricket strategy.

1. For those unfamiliar with the game of cricket, it is a bat and ball game
with some similarities to baseball.



community, since our wanted knowledge is more specia-
lized, and obtain popularity advice from the indoor cricket
strategy community.

We can see that the cricketing community would contain
those who are interested in cricket and not indoor cricket,
and those that are interested in cricket and also indoor
cricket. And likewise, the indoor cricketing community
would contain those that are interested in the strategy of the
game, and those that are not interested in the strategy and
just playing for fun. Therefore, the communities are not
independent, but overlap at different resolutions.

Now that we have an understanding on the different
resolution that exists within communities and their asso-
ciated popularity lists, we can make use of them when
searching the Web. To use the lists effectively, we must be
able to compute the lists, select the most appropriate list,
then use the information from the selected list.

2.1.2 Computing the Community Popularity Lists

To compute community popularity lists at multiple resolu-
tions, we must choose the desired resolution and then
compute the basis for that resolution. For example, the lowest
(broadest) resolution treats the whole population as one
community; therefore, the computed basis is the best one-
dimensional basis that fits the Web link data, containing the
popularity of each Web page. To compute the next resolu-
tion, we compute the best two-dimensional basis for the Web
link data. Each of the two basis vectors provides us with a
ranked list of Web pages, that when combined, gives the best
two-dimensional approximation to the link data. Each of the
two lists contains the popularity of each Web page with
respect to some community. By assuming more commu-
nities, we increase the dimensionality of the basis computed,
and hence obtain more ranked lists, that when combined,
provide a better approximation to the original link data.

2.1.3 Selecting a Community Popularity List

Each of the community’s popularity lists computed from
our multiresolution decomposition has some interest at
some specific resolution. We can use the knowledge of these
communities to help us further our understanding of some
topic. But to do so, we must know which community has
our interest as their interest.

Therefore, the next challenge is to derive a method of
selecting the community popularity list that best suits our
information need.

2.1.4 Obtaining the Information

Once we find a specific community popularity list where
the associated community’s interests are the same as those
of our inquisition, we can the use the popularity informa-
tion to determine which Web pages suit our need. To do so,
we obtain a set of candidate pages that match our interest,
and rank them according to the ranks provided in the
community popularity list.

2.2 Web page Feature Vectors

Communities within the Web can be found by locating Web
pages that contain similar features. Before we can measure a
set of Web pages for similarity, we must first obtain the
features that are to be compared.

To show how to compute the Web page-community
relationships, we will assume we know the Web page-
community relationships and show how they are related to
the Web page-Web page relationships.

The ideal space for Web page vectors would contain a
feature for every community or interest in the Web. The
value of the feature would represent the association of the
Web page to the community. For example, a set of Web
pages may have the following vectors:

From this, we can see that page 2 has the highest association
to community 1 (with an association value of 10) and
community 4, page 3 has the highest association to
communities 1 and 2, and page 4 has the highest association
to communities 3 and 5. Using these page vectors, we are able
to compute the similarity using the inner product. Therefore,
the similarity between pages 1 and 2 is 28, and the similarity
between pages 1 and 3 is 25. The set of all similarities is
shown in Table 1. From this table, we can deduce that page 1
is most similar to page 4, page 2 is most similar to page 3.
From examining the Web page vectors, we can see the
similarities in that pages 1 and 4 both have a high association
to community 3, and that pages 2 and 3 have high
associations to communities 1 and 4.

If we represent the set of page vectors as a matrix A, then
the table of page relationships is given in matrix form as

R ¼ AAT ;

where R is the relational matrix containing the Web page
similarity values.

Unfortunately, we do not have a set of Web page
vectors A with community features, and there is no
simple method of extracting them from the Web page set.
But we are able to generate an estimate of the relational
matrix R that can be computed using the hyperlink graph
within the set of Web pages. Using this estimate of the
relational matrix R, we can compute the decomposition
AAT to provide us with each Web pages relationship to
each community. We will discuss how to perform this
decomposition in Section 2.4.
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TABLE 1
A Relational Matrix for a Set of Four Webpages, Generated

Using the Inner Product of the Pages Feature Vectors



2.3 Relational Link Matrices

The relational matrix for a set of Web pages can be derived
based on the hyperlinks traversing from one page to another.
A simple link-based relational matrix would contain a row
and column associated with each Web page. Each element of
the matrix would contain a 1 if there was a link that came
from the Web page associated with the column and pointed
to the Web page associated with the row, and a 0 otherwise.
This simple link matrix has the problem that it can be easily
biased by pages that contain many links. In this section, we
will examine three forms of known relational link matrix
generation methods that do not suffer from this problem,
which we can use to estimate R.

2.3.1 PageRank

The PageRank [1] of a Web page is the probability of
arriving at that page after in infinite random walk on the
Web link graph. PageRank is computed using the following
equation:

aj ¼ ð1# !Þ
X

iji!j

ai
outi
þ !

N
; ð1Þ

where ai is the PageRank score of page i, outi is the out
degree of page i, N is the number of Web pages, and ! is
the random jump probability. The last term of the equation
is the probability of arriving at page j after a random
jump, where the probability of arriving at each page is
equally likely.

Equation (1) can be rewritten in vector notation as

~a ¼ ð1# !ÞLTD#1
out~aþ !~n

¼ ð1# !ÞLTD#1
out þ !C

! "
~a;

where each element li;j of the link matrix L is

li;j ¼
1; if page i links to page j;
0; otherwise;

#
ð2Þ

the diagonal matrix Dout contains the out degree of each
page, ~n is a vector containing the constants 1=N , and C is
the matrix containing the set of constant column vectors ~n.
Note that ~n ¼ C~a due to

P
i ai ¼ 1. The PageRank equation

can be simplified to

~a ¼ RPR~a;

where the stochastic matrix RPR ¼ ð1# !ÞLTD#1
out þ !C. We

can see that R is a relational matrix that contains the
information on how each Web page is related to each other
Web page.

2.3.2 HITS

HITS link analysis [2] computes the rank of authorities and
hubs using mutual re-enforcement. The authority and hub
score of each page is computed using

aj ¼
X

iji!j
hi hj ¼

X

ijj!i
ai;

where ai and hi are the authority and hub score of page i,
respectively. By substituting the hub equation into the

authority equation, we can obtain a single equation for the
authority computation:

aj ¼
X

iji!j

X

kji!k
ak:

Given the link matrix L from (2), we can rewrite the HITS
authority equation as

~a ¼ LTL~a ¼ RHITS ~a;

where RHITS ¼ LTL is the relation matrix between each Web
page.

2.3.3 SALSA

If we examine the formation of the SALSA [3] authority
computation:

aj ¼
X

iji!j

X

kji!k

ak
inkouti

;

we can see that it is a normalized version of the HITS
authority equation. The normalization gives SALSA the
stochastic property as found in PageRank. We can write the
SALSA authority equation in vector notation as

~a ¼ LTD#1
outLD

#1
in ~a

¼ RSALSA~a;

where the relational matrix RSALSA ¼ LTD#1
outLD

#1
in contains

the relationships between the set of Web pages.
We have shown that each of the link analysis methods

provides an estimate of R, that can be reduced to the
form of

~a ¼ R~a;

which is an eigenvalue equation with the eigenvalue equal
to 1. The ranked list produced by each of these methods is
the eigenvector associated with the largest eigenvalue. It
was previously shown [4] that that largest eigenvector ~a
also satisfied the following property:

~a ¼ argmin~v kR# ~v~vTk
$ %

;

where R is a stochastic matrix. This implies that the best
one-dimensional approximation of the relational matrix is
given by the outer product of the first eigenvector to itself.
Therefore, the eigenvalue decomposition can be used to
obtain the best suited one-dimensional feature vector of the
set of Web pages. This single feature would be a dominant
feature across the Web and is used in PageRank, HITS, and
SALSA to rank all pages within the Web.

A second factor can be produced by examining the
second eigenvector, but unfortunately it is likely to contain
imaginary values from the complex domain due to the
relational matrix being nonsymmetric. There is no simple
method of ranking complex values; therefore, analysis is left
to only the first eigenvector.

2.4 Multiresolution Link Analysis Using Symmetric
Nonnegative Matrix Factorization (SNMF)

As described in the previous section, by using the eigenvalue
decomposition, we are able to compute the one-dimensional
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approximation of the given relational matrix. For algorithms

such as PageRank, HITS, and SALSA, this one-dimensional

approximation is used as the popularity or authority rank of

each of the Web pages.
Symmetric nonnegative matrix factorization [6] is a

method of decomposing a relational matrix into its object

vectors, assuming that the relations are measured using the

inner product. The decomposition has the form

R & AAT ;

where R is our known link relational matrix and A is the

computed set of nonnegative factors of R. SNMF was

previously used to decompose the PageRank link matrix

into various community-based popularity lists [4]. In fact, if

we decompose the matrixR into its one-dimensional factors:

R & ~a~aT ;

it was shown in [4] that we obtain the first eigenvector of R

(the best one-dimensional approximation of R). The

relations found in the PageRank link matrix are the fraction

of PageRank that is distributed from page a to b. If we

think in terms of votes, the relations are the fraction of

votes page a gives to page b. By performing SNMF on this

relational matrix, we reveal the feature vectors associated

with each of the Web pages that produce the relations in

the relational matrix.
Using the example relations from Table 1, we can use

SNMF to decompose the relations into their feature vectors.

We are not able to identify the number of features that

original feature vectors used; therefore, we will begin by

assuming one feature. The resulting one-dimensional Web

page vector is presented in the table below:

By computing only one factor, we have produced a global

measure of relatedness, based on the relationships of all Web

pages. The results say that page 2 has the highest relation-

ship to every other page, followed by page 4, then page 3,

and page 1 has the smallest relationship. By computing only

one factor, we have taken all of the information in the

relational matrix, and compacted it into one dimension to

give a single score to each page (as also done in PageRank,

HITS, and SALSA). We have done this on the assumption

that the set of Web pages contains only one community.
By decomposing the relational matrix into two factors,

we assume that there are two communities. The two-factor

SNMF on Table 1 produces:

Each of these factors provides us with a finer view of the
Web page relations when compared to the single factor
previously computed. By examining the first factor, we see
that pages 2 and 3 produce high scores, while pages 1 and 4
produce low scores. The second factor shows pages 1 and 4
producing high scores and pages 2 and 3 producing low
scores. Each of these factors is representative of a commu-
nity interest. Therefore, these factors are consistent to our
findings in Section 2.2 that pages 1 and 4 are related, and
pages 2 and 3 are related.

By decomposing the relational matrix into three factors,
we obtain:

These three factors represent three community interests.
We can see that the first and third factors are similar to
the factors found in the two-dimensional decomposition.
The second factor shows page 2 having a high score,
while the remaining pages have low scores. This implies
that page 2 belongs to a community that is not found in
other pages (which could be due to its relatively high
score of feature 1).

From these three decompositions, we have six commu-
nity popularity lists covering three resolutions. The lowest
resolution, providing a global measure of similarity, is
equivalent to the lists we compute with PageRank, HITS,
and SALSA. The remaining lists are higher resolution lists
that divide the Web into communities and provide
similarity values for each page to each of the communities.
This implies that queries that are associated with a
community would obtain more precise results when using
an associated community popularity list and not an
unrelated community popularity list.

In the example, we computed six community popularity
lists (by computing the one-, two-, and three-factor SNMF).
For a given data set, the greater the number of community
popularity lists computed, the better the results as long as
the list selection method is effective. For example, a system
using three lists (using one- and two-factor SNMF) will
always provide equal or better results than a system with
one list. This is because the list of the latter system is
included in the three lists of the former system. If the lists
are chosen properly at query time, and the best list is the
one list that both have in common, both systems will
provide the same results. If the best list is not the list that

PARK AND RAMAMOHANARAO: MULTIRESOLUTION WEB LINK ANALYSIS USING GENERALIZED LINK RELATIONS 1695



both have in common, then the system with three lists will
provide better results.

Note that the communities computed from the relational
link matrix are not defined by the content of the Web pages,
but defined by the Web links between them. The factors
computed from SNMF of the link relational matrix compute
the most likely features of the Web pages to produce the
given link structure; we are calling the features commu-
nities, and the value associated with these features is the
Web page-community relationships.

3 EXPERIMENTATION

When seeking information and facing multiple commu-
nities, we must decide which community best suits our
query. Once we have selected a community, the community
will direct us to their popular answer. Now that we have
shown how to obtain the multiresolution community
popularity lists for a given relational matrix, we need to
examine how to choose a community popularity list based
on our set of candidate Web pages returned by our query.

In this section, we will examine the effect of several
methods of community selection using our multiresolution
community popularity lists to assist during the search
process. Our experimental environment consists of the
WT10G Web document collection used in TREC-9 and
TREC-2001,2 with all 100 queries (queries 451 to 550) and
the associated relevance judgements. The WT10G Web
document collection is a 10 gigabyte crawl of the Web,
containing 1.69 million Web pages. Analysis has shown that
this Web page collection has similar characteristics to the
Web and therefore is a good representative sample of the
Web [7]. Therefore, the WT10G Web document collection is
ideal for our experimental purposes.

To perform our experiments, we generated community
popularity lists for the first four resolutions using one-, two-,
three-, and four-dimensional SNMF, where the lowest
resolution treats the Web page collection as if it came from
one community, the second resolution contains two com-
munities, the third resolution contains three communities,
and the fourth resolution contains four communities. We
implemented SNMF as suggested in [6].

To evaluate our experiments, we examined precision at
10 documents (Prec10) and the number of matched queries.
Precision at 10 documents is the average number of relevant
Web pages found in the top 10 ranked Web pages. It has
been observed that the typical Web user does not examine
more than the first 10 top ranked Web pages [8]; therefore,
precision at 10 is appropriate for Web retrieval evaluation.
Matched queries is the number of times we issued a query
and our choice of list was the best choice from our set of
community popularity lists across all resolutions. Therefore,
for 100 queries, a matched query value of 40 implies that the
best list was chosen for 40 queries and the best list was not
chosen for the remaining 60 queries. The best list for a query
is defined as the list, that when used, provides the
maximum precision at 10 for that query.

The information retrieval process used was:

1. When given a query, obtain a set of candidate Web
pages based on the Web page content.

2. Select a community popularity list based on the
distribution of the candidate Web pages in each list.

3. Rerank the set of candidate Web pages using the
ranking found in the selected community popu-
larity list.

Note that a Web search engine would use additional
features to rank the pages presented to the user, and that
each search engine uses different features. In our experi-
ments, we are examining the effect that the community
popularity lists have on the search results; therefore, we
have simplified the ranking process to observe this effect.

The Zettair text search engine3 was used to retrieve the
set of candidate Web pages for each query.

3.1 Choice of Relational Matrices

It was previously shown that we can produce effective
multiresolution community popularity lists using the
PageRank relational matrix. Therefore, we will provide
results of this method as a baseline.

Experimental evidence has shown that use of SALSA
and In-degree for information retrieval produces similar
precision results to each other, and better precision results
than HITS and PageRank [5]. Therefore, we will focus our
attention on SALSA and In-degree.

It was shown that the authority list computed using
SALSA on a given set of Web pages is equivalent to
computing the In-degree of the same set of Web pages [3].
We can show this by substituting the vector of in-degree
values for each page into the eigenvalue equation for
SALSA. By doing this, we find that the in-degree vector is
the eigenvector associated with the largest eigenvalue. The
SALSA eigenvalue equation is

RSALSA~v ¼ ~v"

LTD#1
outLD

#1
in ~v ¼ ~v":

If we choose ~v ¼ ~din ¼ diagðDinÞ, we obtain

LTD#1
outLD

#1
in

~din ¼ ~din"

LTD#1
outL~1 ¼ ~din"

LTD#1
out

~dout ¼ ~din"

LT~1 ¼ ~din"

~din ¼ ~din";

where ~dout ¼ diagðDoutÞ. Therefore, ~din is an eigenvector of
LTD#1

outLD
#1
in , with corresponding eigenvalue " ¼ 1.

Since RSALSA is a stochastic matrix, its largest eigenvalue
is 1. Therefore, the In-degree vector is the eigenvector
associated with the largest eigenvalue of RSALSA, and hence
the steady state solution when using SALSA.

The link matrix used with SALSA is the set of pages
associated with the query and their neighbors, and there-
fore query dependent. If instead we used the entire
collection of Web pages (removing the dependence on the
query), the steady state solution to SALSA is exactly the in-
degree of each page. Therefore, we define Rin-degree as
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Rin-degree :¼ RSALSA; where L contains all Web pages:

For our link analysis, we will be using the entire set of Web
pages for our link matrix L. This implies that even though
we are using the SALSA relational matrix, we are unable to
show results for SALSA due to our community popularity
list computation being query independent. To make it clear
that we are computing community relationships based on
the whole relational link matrix, we have labeled our
experiments as In-degree and not SALSA.

3.2 Query Independent Selection

To begin our investigation, we will examine the effect of each
community popularity list individually. Since we are not
basing our choice of community popularity list on the query,
our list selection is query independent. Table 2 provides a
baseline measure, showing the precision at 10 and the
number of matched queries for each community popularity
list, computed using the PageRank link metric. The columns
of the table are divided to show the list’s community number
and resolution. At resolution 1, the community popularity
list provides the same Web page rankings as PageRank.
Included in this table are the PageRank ratio and In-degree
ratio. These values are the precision at 10 documents for the
selected list divided by the precision at 10 documents when
using either PageRank or In-degree on the set of 100 queries.
We can see that the PageRank ratio for the first resolution is
1, showing their equivalence. The results show that each of
the 10 community popularity lists has a PageRank ratio of 1
or greater, implying that by picking one of the 10 lists at
random, we should perform at least as good as PageRank, if
not better.

Also included in the table is a matched queries number.
This number identifies how many queries achieved their

greatest precision when using the associated list. For
example, 37 of the queries obtained the greatest precision
when using list 1 from community 1. There may be multiple
lists that provide the greatest precision for a query;
therefore, the sum of the matched queries does not have
to sum to 100. It is interesting to note that higher matched
queries does not imply a greater precision. If we compare
resolution 4, community 2 to resolution 1, community 1, we
see that the former has a greater precision at 10 documents,
while the latter has a greater number of matched queries.
This difference implies that by using resolution 4, commu-
nity 2, the queries that we matched have more relevant Web
pages in the top 10 than those that were matched using
resolution 1, community 1.

Table 3 displays the precision at 10 documents and
matched query results when using the in-degree link-
based relational matrix to build the multiresolution
community popularity lists. At resolution 1, the commu-
nity popularity list provides the same Web page rankings
as when using in-degree. This table includes the PageRank
ratio and In-degree ratio as in Table 2. We can see that the
In-degree ratio is 1 for the first community popularity list,
reflecting the equivalence of In-degree and the first
community popularity list generated using the In-degree
relational matrix.

It is interesting to see that the precision at 10 documents
using the in-degree link metric provides higher precision
for the majority of the community popularity lists when
compared to the precision when using the PageRank link
metric (eight of the 10 lists), while the reverse is shown
when examining the matched queries (the PageRank
method has a greater number of matched queries for seven
of the 10 lists).
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TABLE 2
The Precision after 10 Documents (Prec10) Obtained Using the 10 Computed Popularity Lists Computed

from the PageRank Relational Matrix

The PageRank and In-degree ratios are the ratio between the chosen popularity list and PageRank or In-degree, respectively. We can see that the
first list provides the same precision as PageRank and every other list is greater. The matched queries row shows the number of queries in which the
associated list provided the best precision.

TABLE 3
The Precision after 10 Documents (Prec10) Obtained Using the 10 Computed In-Degree Popularity Lists

The PageRank and In-degree ratios are the ratio between the chosen popularity list and either PageRank or In-degree. The matched queries row
shows the number of queries in which the associated list provided the best precision.



3.3 Oracle Selection
In this section, we move on to examining the effect on
precision of choosing a community popularity list based on
individual queries. The first method of list selection we will
examine is the oracle method. The oracle method chooses
the best list for the query based on the precision that list will
provide. This is not a method we can use in practice, since
we would not have prior knowledge of the precision for
each list, but it is presented in this paper to provide an
upper bound for our experimental results. Using this upper
bound, we obtain a better understanding as to how well our
proposed query-based community popularity list selection
methods function. The results of using this oracle method
using the PageRank and In-degree relational matrices are
shown in Table 4.

By computing the multiresolution community popularity
lists from the PageRank relational matrix, we find that we
are able to achieve a possible 106 percent increase in
precision over the PageRank baseline and an 86 percent
increase in precision over the in-degree baseline.

By computing the multiresolution community popularity
lists from the in-degree relational matrix, the oracle selection
method shows that we have the potential to achieve a
133 percent increase over the PageRank baseline and
110 percent increase in precision over the In-degree baseline.
For the remainder of this paper, we will focus our attention on
finding a query dependent list selection metric that will help
us to utilize the benefits of our community popularity lists.

3.4 Rank-Based Selection

To effectively use the set of community popularity lists, we
must be able to choose the appropriate list at query time to
use for the given query. To do so, we first compute the set of
candidate Web pages that are most similar to the query (by
using a text retrieval system and choosing the top ranked
Web pages for the given query), then we compute which
community popularity list is the most similar to the set of
candidate Web pages.

Once a list has been chosen, the set of candidate Web
pages are ranked according to their rank in the chosen
community popularity list. In this section, we will examine
the effect of the systems precision when community
popularity lists are chosen based on the rank of the set of
candidate Web pages within the list. Therefore, once the set
of candidate Web pages have been selected, we compute a

score for every community popularity list; the list that
achieves the highest score is selected and used to rank the
candidate Web pages.

3.4.1 Simple Rank-Based Metrics

Before we describe the metrics used to score the lists, we
must first discuss the desirable properties of a selected list.
Each list provides an ordered set of all of the Web pages,
ordered according to some community interest. Therefore,

. if a set of pages were directly related to the
community interest, they would appear near the
top of the list,

. if a set of pages were not directly related to the
community interest, but they were related in some
sense, they would appear nearby each other in the list,
and

. if a set of pages were totally unrelated to the
community popularity list, they would appear
scattered throughout the list.

From this description of desirable properties, it seems that a
list is appropriate for a query if the mean rank of the set of
pages within the list is minimal. It also suggests that a list is
desirable if the standard deviation of the ranks is minimal for
a given set of pages. To account for these properties, we have
constructed four metrics for list selection:

minðmeanÞ :¼ argmincðmeandðRc;dÞÞ
minðsdÞ :¼ argmincðsddðRc;dÞÞ

maxðimeanÞ :¼ argmaxcðmeandðR#1
c;dÞÞ

minðisdÞ :¼ argmincðmeandðR#1
c;dÞÞ

where Rc;d is the rank of the dth candidate Web page in the
cth community popularity list and R#1

c;d is its reciprocal.
Therefore, minðmeanÞ returns the number of the list that
provides the minimum mean rank of the set of candidate
Web pages.

3.4.2 Combined Rank-Based Metrics
We will also use four combination metrics, that take into
account both the mean and standard deviation of the ranks:

minðmean:sdÞ :¼ argmincðmeandðRc;dÞ ' sdjðRc;dÞÞ
minðmean:isdÞ :¼ argminc

$
meandðRc;dÞ ' sdj

$
R#1
c;d

%%

maxðimean=sdÞ :¼ argmaxc
$
meand

$
R#1
c;d

%
=sdjðRc;dÞ

%

maxðimean=isdÞ :¼ argmaxc
$
meand

$
R#1
c;d

%
=sdj

$
R#1
c;d

%%
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TABLE 4
The Precision after 10 Documents (Prec10) Obtained Using the

Best Community Popularity List for Each Query

This score shows the best possible score that can be obtained using our
10 PageRank multiresolution community popularity lists and the 10 In-
degree multiresolution community popularity lists. We can see that the
PageRank oracle method provides a 106.2 percent improvement over
PageRank and the In-degree oracle method provides a 110.4 percent
improvement over In-degree.

TABLE 5
An Example Set of Webpages Returned by a Query and

Their Associated Score and Ranks from
Three Community Popularity Lists



For each of these metrics, we examined the effect of using
the top n candidate Web pages as the set Rc;d, where n
ranges from 2 to 50 (note that n ¼ 1 was excluded since the
standard deviation of one value is not defined).

3.4.3 Example of Rank-Based Metric Use

Before examining the results, we will provide an example of
how the metrics are used to choose a community popularity
list. After issuing a query, the four Web pages in Table 5 were
returned by the system waiting to be ranked. To rank the Web
pages, we must choose a community popularity list and then
rank the Web pages, respectively. If we use minðmean:sdÞ to
select the community popularity list, we must first choose the
number of candidate Web pages that are to take part. For this
small example, we choose three. We then proceed to compute

the mean community rank of each of the top three ranks from

each list. From List 1, we obtain ð10þ 32þ 5Þ=3 ¼ 15:667;

from List 2, we obtain ð13þ 17þ 11Þ=3 ¼ 13:667; and from

List 3, we obtain ð7þ 24þ 18Þ=3 ¼ 16:333. So from these

results, we want the list that provides the minimum mean,

which is List 2. The Web pages would then be ordered by

List 2 and presented to the user. If we used minðsdÞ, we would

compute the results in the same way, but use standard

deviation instead of mean. This would give us a score of

14.364 for List 1, 3.055 for List 2, and 8.621 for List 3. Therefore,

using this metric, we would also choose List 2. For

maxðimeanÞ and minðisdÞ, we would follow the same process,

but use the reciprocal of the ranks, rather than the ranks, for

the mean and standard deviation computation.
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Fig. 3. Increase in precision at 10 documents when using the rank of the candidate Web pages in the community popularity lists to select a list. The
top two plots show results computed using the PageRank relational matrix, while the bottom two plots show results computed using the in-degree
relational matrix. The x-axis shows the number of candidate Web pages used during the list selection computation. The left y-axis shows the
increase in precision at 10 documents when compared to ranking the candidate Web pages with PageRank. The right y-axis shows the increase in
precision at 10 when compared to ranking the candidate Web pages with in-degree. (a) Simple rank metrics on PageRank relations. (b) Combined
rank metrics on PageRank relations. (c) Simple rank metrics on In-degree relations. (d) Combined rank metrics on In-degree relations.



When using the combined metrics, we simply combine

the scores from the simple metrics to obtain the list scores.

3.4.4 Rank-Based Metric Results

A set of plots showing the results of using the metrics with

the given ranges of candidate Web pages is shown in Fig. 3.

From these results, we can see from Fig. 3a that simply

choosing the list that has the minimum mean rank provides

a steady increase in precision as the number of candidate

Web pages used increases. The results for the minimum

standard deviation fluctuate, therefore making it hard to

choose the number of candidate Web pages that provide the

best precision. The remaining simple metrics (max(imean)

and min(isd)) both stabilize at precisions lower than the In-

degree precision, and are therefore not effective.
Two of the combined metrics (min(mean.isd) and

max(imean/isd)) used on the PageRank relation commu-

nity popularity lists in Fig. 3b peak in the 10 to 20 Web page

range, providing at least a 20 percent increase over

PageRank and at least a 10 percent increase over In-degree.
From the In-degree community popularity lists, we can

see that max(imean) in Fig. 3c is stable in the range of 1 to

15 Web pages providing an increase of 10 percent over the

In-degree precision. The min(isd) metric also stabilizes as

the number of Web pages used nears 50. For the combined

metrics in Fig. 3d, we see that max(imean/isd) begins to

stabilize near the 50 Web page mark providing an increase

of about 10 percent over the In-degree precision. The

remaining metrics fluctuate, therefore making it hard to

choose the right number of candidate Web pages to use for

list selection.

3.5 Score-Based Selection

When generating community popularity lists for a given

relational matrix, we obtain a set of scores for each of the

Web pages. These scores are then used to rank the set of

Web pages. In the previous section, we examined the effect

of choosing a community popularity list, based on the ranks

of the candidate Web pages within the list. In this section,

we will examine the effect of the choosing a list based on the

scores of the candidate Web pages within the list.

3.5.1 Simple Score-Based Metrics

Within each list:

. The Web pages with the greatest score are the pages
that are most representative of the list. Therefore,
when examining the set of lists, we should choose
those that assign the set of candidate Web pages the
greatest score.

. Webpages that have similar scores within a list are
likely to be related; therefore, we should also seek
the list that has our set of candidate Web pages with
similar scores.

Based on these qualities, we have chosen four simple

metrics for choosing a community popularity list, based on

the mean and standard deviation:

maxðmeanÞ :¼ argmaxcðmeandðSc;dÞÞ
minðsdÞ :¼ argmincðsddðSc;dÞÞ

minðimeanÞ :¼ argminc
$
meand

$
S#1
c;d

%%

minðisdÞ :¼ argminc
$
meand

$
S#1
c;d

%%

where Sc;d is the score of the dth candidate Web page in the
cth community popularity list and S#1

c;d is its reciprocal.
Therefore, maxðmeanÞ returns the number of the list that
provides the maximum mean score of the set of candidate
Web pages.

3.5.2 Combined Score-Based Metrics

We will also use four combination metrics, that take into
account both the mean and standard deviation of the scores:

maxðmean=sdÞ :¼ argmaxcðmeandðSc;dÞ=sddðSc;dÞÞ
maxðmean=isdÞ :¼ argmaxc

$
meandðSc;dÞ=sdd

$
S#1
c;d

%%

minðimean:sdÞ :¼ argminc
$
meand

$
R#1
c;d

%
' sddðRc;dÞ

%

minðimean:isdÞ :¼ argminc
$
meand

$
R#1
c;d

%
' sdd

$
R#1
c;d

%%

3.5.3 Example of Score-Based Metric Use

Before proceeding with our experimental results, we will
provide a simple example of the use of our score-based
metrics for community popularity list selection. After issuing
a query, the four Web pages in Table 5 were returned by the
system waiting to be ranked. To rank the Web pages, we
must choose a community popularity list and then rank the
Web pages, respectively. If we use maxðmeanÞ, we must first
select the number of candidate Web pages that are to take
part. In this example, we choose three. We then proceed to
compute the mean of each of the top three scores from each
list. From List 1, we obtain ð0:07þ 0:02þ 0:12Þ=3 ¼ 0:07;
from List 2, we obtain ð0:04þ 0:03þ 0:09Þ=3 ¼ 0:053; and
from List 3, we obtain ð0:13þ 0:08þ 0:10Þ=3 ¼ 0:103. From
this set of score, we choose the list that provides the
maximum mean score, being List 3. The Web pages are then
presented to the user in the order from List 3.

If instead we chose to use minðsdÞ, we would obtain 0.05
for List 1, 0.032 for List 2, and 0.025 for List 3. We then select
the list that provides the minimum standard deviation,
which again is List 3. List 3 is then used to order the Web
page results. The same process is applied when using
minðimeanÞ and minðisdÞ where the reciprocal of each score
is used in the place of each score.

If using a combined metric, we simply compute the score
for each of its components and combine them to obtain the
list score.

3.5.4 Score-Based Metric Results

As with our rank-based experiments, we examined the
effect of using the top n candidate Web pages as the set Sc;d
for each of the metrics, where n ranges from 2 to 50. A set of
plots showing the results of using the described metrics on
the PageRank and In-degree community popularity lists is
provided in Fig. 4.

From the first set of plots (Fig. 4a), we can see that only the
min(sd) metric from this set of simple metrics using the
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PageRank community popularity lists provides stable re-
sults. If we examine the combined metrics in Fig. 4b, we can
see that max(mean/sd) and min(imean.sd) provide large
increases in precision (of 25 percent over PageRank and
15 percent over In-degree) for the 10 to 20 Web page range.

When using the set of simple metrics on the In-degree
community popularity lists (decomposed from the In-
degree relations) in Fig. 4c, we can see that max(mean) is
stable for the 1 to 10 Web page range, while the remaining
simple metrics fluctuate for most of the Web page range.

When observing the combined metrics in Fig. 4d, we
notice that the max(mean/sd) and the min(imean.sd) metrics
provide a high increase in precision around the 10 to 20 Web
page range, as they did on the PageRank community
popularity lists.

3.6 Complexity

To use our multiresolution community popularity lists, we
must first compute the lists offline, and then as queries
arrive, select a list and apply it to the query.

To compute the community popularity lists, we first
build the relational matrix and then apply SNMF. Con-
struction of the PageRank relational matrix requires a
simple pass through the data set since it is simply a
weighted link matrix. The In-degree relational matrix is the
combination of two weighted link matrices. Therefore, the
computation requires a matrix multiply between two N '
N matrices, where N is the number of Web pages. For our
data set containing 1.69 million Web pages, this multi-
plication took about 4 hours. Note that if the Web pages
change, the relational matrix can be updated by including
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Fig. 4. Increase in precision at 10 documents when using the score of the candidate Web pages in the community popularity lists to select a list. The
top two plots show results computed using the PageRank relational matrix, while the bottom two plots show results computed using the in-degree
relational matrix. The x-axis shows the number of candidate Web pages used during the list selection computation. The left y-axis shows the
increase in precision at 10 documents when compared to ranking the candidate Web pages with PageRank. The right y-axis shows the increase in
precision at 10 when compared to ranking the candidate Web pages with in-degree. (a) Simple score metrics on PageRank relations. (b) Combined
score metrics on PageRank relations. (c) Simple score metrics on In-degree relations. (d) Combined score metrics on In-degree relations.



the differences, and therefore the whole matrix does not
need to be recomputed. To speed up this process, an
investigation could be made into performing the SNMF
before multiplying, taking into account that the SNMF
needs to incorporate the multiplication. The one-factor
SNMF decomposition runs in a similar time to an
eigenvalue decomposition used when computing PageR-
ank. The n-factor SNMF decomposition time increases
linearly with n. Therefore, computation of the 10 commu-
nity popularity lists in our experiments took approximately
10 times the time of computing the single PageRank list.
Each of the set of community popularity lists is computed
independently; therefore, our four sets of lists could have
been computed in parallel taking only four times the time of
computing the single PageRank list.

Concerning query times, the community popularity lists
can be stored in an inverted index and the scores computed
using an accumulator, just as Web page scores are
computed from the text they contain. Since the number of
elements being processed is only a fraction of the number of
elements processed during the candidate Web page
computation, the time required for list selection and Web
page reranking would be the same fraction the time
required to compute the candidate Web page scores.

4 RELATED WORK

The use of multiresolution community popularity lists
presented in this paper is novel in that we do not have to
predefine the communities, and that we are able to identify
the community interests at the general resolution and also
at finer more specific resolutions.

Topic sensitive PageRank [9] and personalized PageRank
[10] are similar to the work presented in this paper, in that
they produce PageRank vectors that are biased toward a
collection of Web pages by altering the PageRank jump
probability, but they are different in that the biasing must
be predefined. Personalized PageRank does this by exam-
ining the Web user usage patterns and Topic sensitive
PageRank does this by first identifying collections of Web
pages belonging to the same topic (using the Open
Directory Project categories) and then using these collec-
tions to produce topic biased PageRank vectors. The
multiresolution community popularity lists produced in
this paper are generated based on the structure of the Web
and therefore do not need maintenance of predefined topic
categories and do not need to keep track of Web usage.

A variation of HITS, called TOPHITS [11], uses a relational
tensor to store link and anchor text relations. By using a
tensor decomposition, similar to the singular value decom-
position, authority and hub vectors are computed along with
anchor text vectors. The anchor text vectors are then used to
determine the topic focus of each authority and hub. Again,
this work is similar to ours in that various vectors are
computed for ranking, but the work differs in that the
ranking vectors are assigned topics, where the topics are
extracted from Web anchor text. Our multiresolution
community vectors are not associated with predefined text
and therefore are not limited to a subset of queries.

5 CONCLUSION

Current link analysis methods used in Web search engines
seek to obtain a single list of popularity or authority scores
in order to rank Web pages more adequately. By using only
a single list, we find that search engines are able to respond
well to general queries in which the majority of the Web
community would have an opinion of. Unfortunately, it
also means that search engines find it difficult to supply
information regarding specific queries that the majority of
the Web would not have an opinion of.

Previous work on multiresolution link analysis has
shown that we are able to extend PageRank to produce
multiple lists that center around various portions of the
Web. Each of the lists provides a rank of every page on of
the Web relative to some community.

In this paper, we further examined multiresolution link
analysis using symmetric nonnegative matrix factorization.
We showed how methods such as PageRank, HITS, and
SALSA treat some variant of the Web link matrix as a Web
page relational matrix. The list that each method produces
is the one-dimensional decomposition of the relational
matrix. Hence, each method is attempting to decompose the
Web page relational matrix into its Web page feature
vectors. We were therefore able to show how to perform a
generalized form of multiresolution link analysis that is able
to use any Web page relational matrix.

To show the benefits of our generalized model, we
computed a set of community popularity lists using the
PageRank relational matrix and the In-degree relational
matrix. Using various list selection methods, we showed
that we were able to achieve a 25 percent increase over
PageRank and a 13 percent increase over In-degree. We also
showed that when using the best list selection method, we
can obtain a potential 132 percent increase in precision over
PageRank and a 110 percent increase in precision over In-
degree. This large gap between our results and the optimal
results shows that there is much room for improvement.
This provides the Information Retrieval community with a
new open problem of finding the optimal metric to select
the best community popularity lists for each query in order
to benefit from these large increases of precision.
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