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ABSTRACT

Measurement of graph centrality provides us with an indication of
the importance or popularity of each vertex in a graph. When deal-
ing with graphs that are not centrally controlled (such as the Web,
social networks and academic citation graphs), centrality measure
must 1) correlate with vertex importance/popularity, 2) scale well in
terms of computation, and 3) be difficult to manipulate by individ-
uals. The Random Surfer probability transition model, combined
with Eigenvalue Centrality produced PageRank, which has shown
to satisfy the required properties. Existing centrality measures (in-
cluding PageRank) make the assumption that all directed edges are
positive, implying an endorsement. Recent work on sentiment anal-
ysis has shown that this assumption is not valid. In this article,
we introduce a new method of transitioning a graph, called Power
Walk, that can successfully compute centrality scores for graphs
with real weighted edges. We show that it satisfies the desired
properties, and that its computation time and centrality ranking is
similar to when using the Random Surfer model for non-negative
matrices. Finally, stability and convergence analysis shows us that
both stability and convergence when using the power method, are
dependent on the Power Walk parameter β.

Categories and Subject Descriptors: H.3.3 [Information Search
and Retrieval]; E.1 [DATA STRUCTURES]:Graphs and networks

General Terms: Algorithms, Design, Performance.

Keywords: PageRank, Random Surfer, Sentiment, Graph Central-
ity.

1. INTRODUCTION
Measures of graph centrality provide us with an identification of
where the most important or popular vertices in a graph lie. For ex-
ample, centrality over the Web graph tells us which Web pages are
the most popular, centrality over a social network shows us which
users are the most popular, and centrality over a citation network
shows us which articles are the most popular.

When computing centrality over a graph that is not centrally con-
trolled, we must make sure that the centrality scores cannot be eas-
ily manipulated for personal gain. Three methods of centrality have
shown to achieve this (PageRank (Page et al., 1999), HITS (Klein-
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berg, 1999) and SALSA (Lempel and Moran, 2001)); of these three
HITS and SALSA require an irreducible graph, and so cannot be
computed for the whole graph. They are instead used on a subgraph
dependent on the users query.

The assumption that a directed edge between two vertices im-
plies an endorsement, is not always correct. Recent work on sen-
timent analysis for the Web (Miller et al., 2011), social networks
(Tan et al., 2011), and academic citations (Teufel et al., 2006) has
shown that edges in these graphs can have positive or negative
weight, based on the text associated to the related vertices. Un-
fortunately, existing centrality methods are unable to use negative
edge weights.

There have been attempts at computing centrality on sentiment
graphs using PageRank. Wijaya and Bressan (2008) and Wu et al.
(2009) computed the centrality on a real weighted sentiment graph
by splitting the graph into the magnitude of its positive and neg-
ative graphs. The centrality was computed on both non-negative
weighted graphs and analysed separately, losing any correlation be-
tween the polarised sentiment. Li et al. (2009) kept the sentiment
scores between 0 and 1, which gives the non-ideal environment that
no opinion (a missing edge) was equivalent to negative sentiment.

In this article, we introduce Power Walk, a new method of tran-
sitioning a random walk on a graph that allows not only positive
and neutral edges, but also negative edges. We show that using
Power Walk provides the desired centrality measurement proper-
ties for non-negatively weighted graphs, while also behaving well
for graphs with real valued weights. Thus making Power Walk a
powerful tool for the analysis of popularity on the Web, in social
networks and in the academic community. Our contributions are:

• definition of the Power Rank transition probabilities and its
solution using the Power method (Section 3.1 and 3.2),

• a stability and convergence analysis of the Power method us-
ing Power Walk transitions (Section 3.4), and

• an analysis of the centrality and timing similarity of Eigen-
value centrality using the Random Surfer and Power Walk
transition probabilities (Section 4).

The article will proceed as follows: Section 2 gives an overview of
current centrality methods, Section 3 defines the Power Walk prob-
ability transitions and its features, and Section 4 examines the sim-
ilarity between centrality computed using Power Walk and other
centrality methods.

2. GRAPH CENTRALITY
The centrality score of a vertex within a graph provides us with

an indicator of the importance or popularity of the vertex in the
graph. When measuring the centrality of the set of vertices in scale
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free graphs, such as the World Wide Web, social networks and the
academic citation graph, we require the following properties:

1. the centrality score of a vertex correlates with the importance
or popularity of the vertex,

2. it is computable for large graphs in reasonable time, and

3. it is difficult for individuals to manipulate for personal gain.

Of these three points, the first is ensuring that we are measuring
centrality. The second is required to allow the centrality score to
be computed for large graphs, such as those found in the Web, so-
cial networks and academic citations. The third point ensures that
individuals cannot bias the centrality score, thus keeping it fair for
all. Traditional methods of computing graph centrality, such as De-
gree Centrality, Closeness Centrality, Betweenness Centrality and
Eigenvector Centrality, are not suitable for this task.

Degree Centrality is a simple measure of graph centrality, where
the centrality score of a vertex is equal to the degree (in-degree or
out-degree) of the vertex. The Degree centrality score can be easily
computed for any graph size, but unfortunately, it is also very easy
to manipulate. The centrality score can be increased by adding
more links, to or from a vertex, allowing individuals full control
over their centrality score.

The centre of a circle is the point that has the shortest distance to
all other points in the circle; Closeness Centrality is defined simi-
larly. The Closeness centrality of a point is the inverse of the sum
of shortest paths to all other points. If there is no path to a given
vertex, then the total number of vertices is used in its place. To
compute the Closeness centrality, we must compute the shortest
paths between all vertices, which is computationally expensive.

Centrality can also be defined based on the utility of the vertex.
The Betweenness Centrality score of a vertex is the sum of the frac-
tion of all shortest paths in which the given vertex lies. If a vertex is
useful, it should lie on the shortest path between two other vertices.
To compute Betweenness centrality, we not only need to compute
the shortest paths between all pairs of vertices, but also identify
which vertices lie on these paths. Therefore, it is more computa-
tionally expensive than computing Closeness centrality.

Eigenvector Centrality poses centrality as a recursive problem.
It states that the centrality score of a vertex is a function of the cen-
trality scores of the vertices connected with an incoming edge to
the vertex of interest. The centrality scores are found in the dom-
inant eigenvector of the graph transition matrix. Computing the
eigenvalue decomposition of the transition matrix is computation-
ally expensive, but it has been shown that the dominant eigenvector
can be computed using an iterative method (the Power method) as
long as the all the elements of the transition matrix are positive or
all elements are non-negative and the graph is irreducible. (Farahat
et al., 2006)

The Eigenvector centrality for a given vertex can be manipulated
by adding incoming edges to the vertex. The centrality score for
a given vertex is added to any other vertices connected with out
going edges. Therefore, if vertex v has an Eigenvector centrality
of c, we can increase any other vertex’s Eigenvector centrality by
c by linking to it. Stochastic Eigenvector Centrality removes this
manipulation problem by normalising the outdegree weight of each
vertex so that the outdegree weight sums to 1. When linking to
other vertices, Stochastic Eigenvector Centrality allows each vertex
to distribute its centrality score to other vertices. If vertex vi links
to vertex vj only, vertex vi provides its whole centrality score to
vertex vj . If vertex vi links to many other vertices, they all obtain
a fraction of vertex vi’s centrality score.

Stochastic Eigenvector Centrality satisfies all three requirements
that we posed. Unfortunately, scale free networks do not have the

required properties of either 1) the adjacency matrix is positive, or
2) the adjacency matrix is non-negative and irreducible. Scale-free
graphs (Barabási, 2009; Barabási et al., 2000) found in evolving
networks such as the World Wide Web, social networks and citation
graphs, are sparse graphs, meaning that the proportion of existing
edges is low. Therefore, there are many zeros in their adjacency
matrices. Also, these networks are not guaranteed to be irreducible.
Irreducibility implies that there is a path from each vertex to each
other vertex, which is unlikely in scale-free networks.

The Random Surfer model (Page et al., 1999; Brin and Page,
1998), was developed to allow the use of Stochastic Eigenvalue
Centrality for scale-free networks. The Random Surfer model ad-
justs the values in the graph’s adjacency matrix to ensure all values
are positive and hence the graph is irreducible. The name Random

Surfer implies a Web user navigating through the Web by randomly
selecting and following hyperlinks within the currently displayed
Web page. The random surfer model also provides a small proba-
bility that the Web user will jump to a randomly chosen Web page.
The eigenvector centrality score using the Random Surfer transi-
tion matrix is more commonly known as PageRank. PageRank is
computed as:

PR(vi) = α
∑

vj∈In(vi)

PR(vj)

|Out(vj)|
+

1− α

n
(1)

where In(v) and Out(v) is the set of vertices with edges directed
into and out of v respectively, |x| is the cardinality of set x (mean-
ing |Out(v)| is the out degree of vertex v and | In(v)| is the in-
degree), PR(v) is the PageRank of vertex v, n is the number of
vertices in the graph, and α ∈ [0, 1]. We can write equation 1 in
matrix notation as:

~p = αAD−1
A ~p+

1− α

n
~1

where A is the graph adjacency matrix containing the elements ai,j

(ai,j = 1 if there is an edge from vertex vj to vi and ai,j = 0 oth-
erwise), DA is a diagonal matrix containing |Out(vj)|, ~p contains

the elements PR(vi), and ~1 is the vector with each element 1. We
can add the constraint that the sum of PR(vi) is one without af-
fecting the result, since PageRank scores are relative, allowing us
to write ~1 = O~p, where O is an n × n matrix with every element
1. Using this knowledge, we can write the PageRank equation as:

~p = αAD−1
A ~p+

1− α

n
O~p

= (αAD−1
A +

1− α

n
O)~p = T~p

where T is the Random Surfer probability transition matrix (Park
and Ramamohanarao, 2011, 2007).

A problem occurs when computing PageRank if there are ver-
tices with zero out degree. If we examine the probability transition
matrix, the columns will sum to one for all vertices that have an
out degree of greater than 0, but the column sums to 1 − α when
the associated vertex out degree is zero. A fix for this problem is
to renormalise the column (divide by 1 − α), which is equivalent
to adding outgoing edges from the associated vertex, to every ver-
tex in the graph). This gives us the probability transition matrix T ,
containing the elements:

ti,j =







α
|Out(vj)|

+ 1−α
n

if vj ∈ In(vi)
1−α
n

if vj 6∈ In(vi) and |Out(vj)| > 0
1
n

if |Out(vj)| = 0

To compute the PageRank of a given graph, we construct the tran-
sition probability matrix T and compute the eigenvector associated
to the eigenvalue 1.
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3. RANDOM WALKS WITH REAL VALUED

WEIGHTS
We saw in the previous section that Stochastic Eigenvector cen-

trality is a useful measure of graph centrality since it correlates with
importance/popularity of vertices, is computable for large graphs
using the Power method, and it is difficult to manipulate. For it
to be computable for scale free graphs, we use the Random Surfer
probability transitions, which 1) adds a random jump and 2) renor-
malises the probabilities for vertices with no out-degree.

So far we have assumed that an edge from vertex vi to vertex
vj implies that vertex vi endorses vj . When examining the Web,
social networks and academic citations, we find that this is not al-
ways the case. Social networks allow users to provide positive and
negative votes towards items in the network, and sentiment analysis
now allows us to examine the polarity of Web links and citations,
allowing us to see if the directed edge implies a users approval or
disapproval.

In this section, we will examine how we can include negatively
weighted edges in our centrality computation. When considering a
random walk over a graph with positive and negative edge weights,
a positive edge weight implies that there is an attraction to walk to
the connecting vertex, while a negative weighted edge implies re-
pulsion. We want to ensure that, given a vertex and a set of outward
directed edges:

1. The probability of transitioning to a vertex using a positively
weighted edge is greater than the probability of transitioning
to a disconnected vertex (no direct edge to the vertex).

2. The probability of transitioning to a vertex using a positively
weighted edge is greater than the probability of transitioning
to a vertex using a negatively weighted edge.

3. The probability of transitioning to a disconnected vertex is
greater than the probability of transitioning to a vertex using
a negatively weighted edge.

If we treat an absent directed edge as a directed edge with zero
weight, and consider only graphs with edge weights 1, 0 and −1,
we can adjust the Random Surfer model to have an additional term,
allowing for the −1 edges:

T = α+A+1D
−1
A+1

+ α−A−1D
−1
A

−1
+ (1− α+ − α−)E (2)

where A+1 is the adjaceny matrix containing only the positive edges,
A−1 is the adjaceny matrix containing only the negative edges,
DA+1

and DA
−1

are the diagonal out degree matrices of A+1 and
A−1 respectively, α+ and α− are greater than zero and α++α− <
1.

The probability transition matrix in equation 2 satisfies require-
ments 1 and 2, but not 3. We can see that even though we as-
sign a small probability of traversing to a vertex using a negatively
weighted edge, there is also the chance of randomly jumping to the
vertex. This makes the probability of arriving at a vertex, at the
end of the negatively weighted edge, greater than the probability of
traversing to an unattached vertex (using an edge of weight 0) .

We can further adjust the Random Surfer probability transition
matrix to be:

T = α+A+1D
−1
A+1
− α−A−1D

−1
A

−1
+ (1− α+ + α−)E (3)

This form satisfies all three requirements, as long as α− < 1 −
α+ + α− < α+, or 0 < α− < 2α+ − 1. We must also make sure
that the final probability transition matrix T is positive, meaning
that (1− α+ + α−)/n− α−/negative_outdegree(v) > 0 or:

0 < α− < (1− α+)/(n− 1)

Unfortunately, this model has the strange effect that the more nega-
tively weighted out going edges from a vertex, the more likely that
they will be followed. Note that if there are no positive or negative
edges from a vertex, we must either remove them, or add outward
directed edges to every vertex.

We can see that the simple Random Surfer model has become
complicated, has an unwanted behaviour, and the parameter α− is
restricted, due to the addition of the random jump to every edge.

3.1 Power Walk
Rather than adapting the Random Surfer model, we will take a

step back and examine how we want our model to behave. We have
three cases for each edge (+1, 0,−1) and there are a set of n edges
for a given vertex. If we define the probability of following an edge
of weight 0 as x, we can define that we want the probability of
following an edge of weight 1 to be βx, meaning we are β times
more likely to follow an edge to a given vertex, than to go to a given
vertex with no connecting edge. We can also define the probability
of following an edge of weight−1 as x/β, meaning we are β times
more likely to jump to a page with no connecting edge, than to
follow an edge with a negative weight. Using these probabilities,
we can write them as P (vi → vj) = xβai,j , where ai,j is the
weight of the directed edge from vertex vj to vertex vi (if there is
no edge from vertex vj to vertex vi, the edge weight is zero). The
probability distribution must sum to 1, therefore:

n
∑

j=1

P (vi → vj) =
n
∑

j=1

xβai,j = 1

⇒ x = 1/
n
∑

j=1

βai,j

This gives us the probability transition matrix values:

ti,j =
βai,j

∑n

j=1 β
ai,j

where β is a positive real value. We call this the Power Walk prob-
ability transition matrix, given as:

T = BD−1
B

where B = βA, and DB is a diagonal matrix containing the col-
umn sums of B, and hence when used with eigenvalue centrality,
we have the Power Walk model.

Using the Power Walk transition probabilities, we satisfy all three
properties for positive and negative weights, and we also ensure
that that probability transition matrix is positive and stochastic for
any graph containing real value weighted edges, meaning that an
eigenvalue centrality solution exists, is associated to the largest
eigenvalue λ1 = 1, and we can use the Power method iterations
to compute the eigenvector.

Note also that using the Power Walk probability transition ma-
trix, we do not have to define a special case for vertices with an out
degree of zero (which is required when using the Random Surfer
model). In this case, the probability of transitioning to any other
vertex is β0/

∑n

j=1 β
0 = 1/n.

3.2 Power method solution
A useful property of the Random Surfer model is that it can be

kept in a sparse form when using the Power method to obtain the
stationary distribution. During each iteration of the power method,
we compute:

~pi+1 = (αAD−1
A + (1− α)E)~pi
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where ~pi is the state probability distribution after the ith iteration.
We know that the sum of ~pi is 1, therefore the product E~pi gives a
vector containing 1/n. This simplifies the power method iterations
to:

~pi+1 = αAD−1
A ~pi +

1− α

n

For Web graphs, or graphs found in social networks or academic ci-
tations, the matrix AD−1

A is sparse and can be stored in a compact
form. Each iteration of the power method requires a matrix multi-
plication with a sparse matrix and the addition of a constant. Both
of these operations can be performed efficiently on sparse graphs.

It is common to find vertices with zero out degree; in this case,
we must adjust the transition matrix so that we have equal proba-
bility of transitioning to any other vertex. To do this, we introduce
the matrix Z that contains all zeros, except for the columns that
associate to vertices with zero out degree, these columns contain
1/n.

~pi+1 = α(A+ Z)D−1
A+Z~pi +

1− α

n

If we add the matrices A and Z, we lose the sparsity of A, so we
will keep them separate to obtain:

~pi+1 = αAD−1
A ~pi + α~z′~pi +

1− α

n

where ~z is a row from Z (all rows in Z are equal), and any zeros in
the diagonal of DA are replaced with 1.

Using the Power Walk method, we find that the matrix B is not
sparse, since all of the zeros from A have been converted to ones.
To keep B sparse, we must split it into B−O and O, where O is a
matrix of ones.

~pi+1 = BD−1
B ~pi

= (B −O +O)D−1
B ~pi

= (B −O)D−1
B ~pi +OD−1

B ~pi

where B = βA, and (B − O)D−1
B is sparse. Again we find that

the second term is an inner product:

~pi+1 = (B −O)D−1
B ~pi + ~δ′B~pi (4)

where ~δB is the diagonal of D−1
B . We have presented the algo-

rithm required to compute the power method using a Power Walk
in Algorithm 1.

3.3 Equivalence of the Power Walk and Ran-
dom Surfer model

For any unweighted adjacency matrix, we can express the Power
walk probability transition matrix in the form of a random surfer
transition matrix. An unweighted adjacency matrix contains only
values of 1 and 0, therefore the unnormalised Power Walk transition
matrix will contain values of β and 1. The random surfer model has
the form:

T = αAD−1
A + (1− α)E

where E is an n× n matrix containing 1/n.
The Power Walk transition matrix can be rearranged to have the

same form as the Random Surfer model, when using an unweighted

Algorithm 1 Power method using the Power Walk transition ma-
trix. The algorithm is designed to ensure that all matrices remain
sparse throughout the computation. A is the adjacency matrix con-
taining real values, β is positive, and ~p is the stationary distribution.

1: procedure POWER WALK(A, β)
2: B ← βA − 1 ⊲ If A is sparse, so is B.

3: ~δB ← (~1′B)−1 ⊲ ~δB is the inverse column sums of B.

4: D−1
B ← diag(~δB)

5: T ← BD−1
B ⊲ If B is sparse, so is T .

6: ~pnew ← ~1/n ⊲ Uniform initialisation.

7: ~p← ~0 ⊲ Initialise with the zero vector.
8: while ‖~pnew − ~p‖ > ǫ do

9: ~p← ~pnew

10: ~pnew ← T~p+ ~δ′B~p
11: end while

12: return ~p
13: end procedure

adjacency matrix:

T = BD−1
B

= (B +O −O)D−1
B

= (B −O)D−1
B +OD−1

B

= (B −O)D−1
B + E(nD−1

B )

= (β − 1)AD−1
B + E(nD−1

B )

= AD−1
A DA(β − 1)D−1

B + E(nD−1
B )

where O is an n × n matrix of ones and I is the identity matrix.
Since AD−1

A , E and T are all stochastic matrices, we find that:

(β − 1)DAD
−1
B = I − nD−1

B

giving us the Random Surfer form:

T = AD−1
A Γ + E(I − Γ) (5)

where the diagonal matrix Γ = I − nD−1
B is equivalent to the

Random Surfer model parameter α.

3.4 Convergence and Stability
If we order the eigenvalues in terms of their magnitude, we know,

by the Perron-Frobenius theorem that the largest eigenvalue λ1 of
a positive stochastic matrix is 1 (Farahat et al., 2006). The sec-
ond eigenvalue λ2, by our definition, is greater than or equal to all
remaining eigenvalues.

The rate of convergence of the power method is dependent on the
magnitude of the second largest eigenvector |λ2| of the probability
transition matrix. The smaller |λ2|, the faster the power method
converges to a solution (Bryan and Leise, 2006; Haveliwala and
Kamvar, 2003). This can be identified by writing the probability
transition matrix T in terms of its eigenvalue decomposition.

T = V ΛV −1

where V is the matrix of eigenvectors and Λ is the diagonal matrix
of eigenvalues. The Power method after k iterations gives:

~pk = T k~p0

= (V ΛV −1)k~p0

= V ΛkV −1~p0
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v1

v2

v3

v4

Figure 1: A small graph containing two irreducible closed sub-

graphs.

weighting the ith eigenvector by λk
i . All eigenvalues are less than

or equal to zero, so the smaller the value of |λi|, the faster it ap-
proaches zero as k approaches infinity. When |λ2|

k is zero, T k is
a rank one matrix determined by the eigenvector associated to λ1

(the stationary distribution). Therefore we can use |λ2| to judge the
rate of convergence of the Power method.

Haveliwala and Kamvar (2003) showed that the second eigen-
value has magnitude |λ2| ≤ α, for any matrix of the form αA +
(1 − α)E where A a stochastic matrix, E is a rank one stochastic
matrix, and 0 ≤ α ≤ 1. They also showed that if A has at least
two irreducible closed subsets, then |λ2| = α. A graph contain-
ing an irreducible closed subgraph implies that there is a subgraph
which is irreducible, and there are no edges out of the subgraph to
the remainder of the graph. Graphs such as the Web satisfy this
requirement (Broder et al., 2000) and it is highly likely that social
network graphs and academic citation graphs also satisfy this re-
quirement, since they all evolve similarly (An et al., 2004; Kumar
et al., 2010).

Ng et al. (2001a,b) examined the stability of the stationary distri-
bution with respect to the probability transition matrix eigenvalues.
They showed that a given stationary distribution, and hence set of
centrality scores, is unstable if |λ2| is close to 1. The reason being,
if there are any changes in the probability transition matrix (e.g. an
edge added or removed), this may increase the second eigenvalue,
swapping it with the first eigenvalue. This swap also results in a
swap of the associated eigenvectors, which may drastically change
the centrality scores.

This analysis of convergence rate and stability shows that we
should reduce the magnitude of the second eigenvalue |λ2|, mean-
ing we should set α to be close to 0 when using the Random Surfer
model. We should also remember that the choice of α reflects the
probability of the random surfer choosing to follow an edge, over
randomly jumping. Therefore a low value of α would cause all
of the centrality scores to become uniform, making them meaning-
less. We find that most common setting for α is 0.85 (Haveliwala
and Kamvar, 2003).

To examine the convergence rate and stability of the power method
using a Power Walk transition matrix, we must examine the magni-
tude of the Power Walk transition matrix’s second eigenvalue |λ2|.
We showed in equation 5 that the Power Walk transition matrix has
the same form as the Random Surfer model when A contains binary
values, where instead of a constant α, we have a diagonal matrix Γ.

To examine the relationship between Γ and λ2, we generated
a graph containing 4 vertices and two irreducible subsets (shown
in Figure 1). If we use the Random Surfer probability transition
matrix with α = 0.85, we obtain the eigenvalues λ1 = 1, λ2 =
−0.85, λ3 = 0.85 and λ4 = −0.85. We can see the relationship

v1

v2

v3v4

v5

v6

v7v8

v9

v10

Figure 2: A slightly larger graph containing two irreducible

closed subgraphs.

Out degree 0 1 2 3 4

γi 0.0000 0.6666 0.7999 0.8571 0.8888

Out degree 5 6 7 8 9

γi 0.9090 0.9230 0.9333 0.9411 0.9473

Table 1: The elements of the diagonal matrix Γ associated to

vertices with the given outdegree in a graph containing 1000

vertices.

|λ2| = α. Using the Power Walk probability transition matrix,
with β = 10, we obtain the eigenvalues λ1 = 1, λ2 = 0.6923,
λ3 = −0.6923 and λ4 = 0.6923 and the diagonal of the matrix
Γ containing (0.6923, 0.6923, 0.6923, 0.6923). This result is en-
couraging since the matrix Γ did contain the value of |λ2|. For
this case, the diagonal matrix Γ contained the same repeated value,
making it equivalent to a constant times an identity matrix, this was
due to the adjacency matrix containing only one nonzero element
per column.

If we examine the graph in Figure 2, which has vertices with dif-
ferent out degree (meaning the elements of Γ will vary), we find the
first four eigenvalues of the Random Surfer probability transition
matrix are λ1 = 1, λ2 = 0.85, λ3 = −0.85 and λ4 = −0.85, us-
ing α = 0.85. The first four eigenvalues of the Power Walk proba-
bility transition matrix are λ1 = 1, λ2 = −0.4737, λ3 = −0.4737
and λ4 = 0.4737, using β = 10. We compute the diagonal matrix
Γ to contain the values (0.4737, 0.4737, 0.4737, 0.4737, 0.6429,
0.7297, 0.6429, 0.6429, 0.64291, 0.7297), showing again the |λ2|
is an element of Γ.

The values of the diagonal matrix Γ are dependent on the number
of vertices in the graph n, and the out-degree of each vertex. We
found that altering the out-degree distribution of the graph does not
affect λ2, but changing the size of the irreducible subgraphs does.

Table 1 contains the possible values of the diagonal of matrix Γ
associated to vertices with out degree from 0 to 9, where n = 1000.
When generating scale free graphs with 1000 vertices, containing
irreducible subgraphs with two vertices, the magnitude of the sec-
ond eigenvalue of the Power Walk transition matrix |λ2| = 0.6666.
When containing irreducible subgraphs with three vertices, |λ2| =
0.7999. When containing irreducible subgraphs with four vertices,
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|λ2| = 0.8571. When containing irreducible subgraphs with five
vertices, |λ2| = 0.8888. When comparing these results with Table
1, it seems that we have the relationship |λ2| is the element of Γ as-
sociated to out degree k, where the graph has irreducible subgraphs
containing k+ 1 elements. Therefore, by rearranging Γ, we obtain
the relationship:

|λ2| = 1− n/(n+ k(β − 1))

where n is the number of vertices in the graph and k is the size
of the irreducible subgraphs. As we increase β, we increase λ2,
therefore to increase stability and decrease the number of iterations
for convergence of the power method, we should decrease β. We
know that the Random Surfer parameter α = |λ2|, therefore, we
can compute β as:

β =
nα

k(1− α)
+ 1 (6)

We need to examine this relationship further, since it is not obvious
how the second eigenvalue behaves when the irreducible subgraphs
are of different sizes.

4. POWER WALK PROPERTIES
We have shown that the Power Walk transition probabilities pro-

vide us with a method of computing the centrality of positive and
negatively weighted graphs. In this section, we will examine how
computing eigenvector centrality with Power Walk transition prob-
abilities compares with existing centrality methods, and how alter-
ing the graph affects the measure of centrality.

Computing the centrality for a real data set would provide us
with a list of vertices, but not show us how the algorithm performs.
In this section, we will examine the behaviour of the Power Walk
on randomly generated graphs having controlled properties. The
random graphs are generated using the Barabási-Albert model to
simulate a Web graph with in-degree power of 2.1 and out-degree
power of 2.7. The number of vertices generated will be stated
with the experiment. We will use the Random Surfer parameter
α = 0.85 and compute the Power Walk parameter β using equa-
tion 6 to obtain comparable results. If we can show that the Power
Walk transitions are equivalent to Random Surfer transitions for
non-negatively weighted graphs, and we can show that the Power
Walk transition behave well for real weighed graphs, then we have
shown there is a benefit in using the Power Walk transitions.

4.1 Rank Similarity
We will first examine how the stationary distribution using Power

Walk transition compares to the mentioned centrality methods. For
this experiment the edges are unweighted (an edge implies a weight
of 1, no edge a weight of 0), since we cannot compare these meth-
ods using graphs with negative weights.

To perform the experiment, we generated 30 random graphs with
1000 vertices and computed the centrality using each of the five
methods. The ranking of the set of vertices using each method were
compared using Kendall’s distance, and the mean and standard de-
viation results are shown in Table 2. Of the five methods, Eigen-
vector (RS) and Eigenvector (PW) stand for Eigenvector centrality
using the Random Surfer and Power Walk transition respectively.

Kendall’s distance is the number of discordances between two
ranked lists. A Kendall’s distance of 5 implies that it takes 5 ad-
jacent transpositions to change one of the rankings into the other.
The maximum distance that can be obtained is n(n− 1)/2, where
n is the number of items in the list.

We can see that the eigenvector centrality computed using Power
Walk transition is very similar to the eigenvalue centrality using

Random Surfer transisition (PageRank), having an average Kendall’s
distance of just under 5, with similar standard deviation. The next
closest pair is Closeness and Indegree having a mean Kendall’s dis-
tance just under 50. All other pairs have a mean Kendall’s distance
greater than 100. Comparing the similarity of all of these graph
centrality methods gives us in indication of the similarity between
the Random Surfer and Power Walk models. We find that they
are relatively close, meaning that if we used Power Walk transition
in the place of Random Surfer transition, we would notice little
change. We also examined the rank similarity using other graph
sizes and found similar results.

4.2 Computation Time
We compared the time to compute the Power Walk centrality

score and Random Surfer centrality scores using the power method,
by generating 30 random graphs of containing 101 to 107 vertices.
The mean and standard deviation computation time is shown in Ta-
ble 3.

We can see that the mean and standard deviation computation
times are very similar and that they increase linearly with the num-
ber of vertices after the 104 mark. The Power Walk stationary dis-
tribution does require more time, this is likely to caused by the
additional inner product in equation 4.

4.3 Power Iterations
We showed earlier that the number of iterations of the Power

method is dependent on the Random Surfer paramter α. In this
section, we will examine the effect of the parameters α and β on the
number of iterations required for convergence of the Power method
using the Random Surfer and Power Walk transition.

To examine the number of iterations, we generate 30 random
graphs containing 104 to 107 vertices and measured the number
of iterations of the Power method required for convergence when
using Random Surfer and Power Walk transitions. For each graph
size, we varied the parameter α and computed β using equation 6.
The mean and standard deviation results are shown in Table 4.

It is interesting to see that the number of iterations of the Power
method is independent on the number of vertices in the graph. As
we increase the vertex count, there is little change in the mean iter-
ations and no correlation with standard deviation iteration change.

The mean and standard deviation iteration count seem to have an
exponential relationship with α, showing the time benefit associ-
ated to having a smaller α. We also see that the mean number of
iterations required when using Power Walk transition is one more
than when using Random Surfer transition, but the standard devia-
tion of the iteration count have little difference. These results show
us that our equation for computing β allows us to obtain compa-
rable timing results for positively weighted graphs. We are unsure
why there is a mean increase of one iteration when using Power
Walk iterations, and will examine this difference in future work.

4.4 Negative edge effect
In this section, we will examine the effect of negative edges on

the number of iterations required for convergence of the Power
method. When examining graphs with negative edges, we can ex-
amine only the Power Walk method (since the other four centrality
methods are suited only for non-negative edges).

We generated 30 random graphs containing 1000 vertices with a
proportion x of randomly chosen edges assigned the weight of−1.
This was performed for proportions from 0 (no negative edges) to
1 (no positive edges). The mean and standard deviation iterations
are provided in Table 5.

The results show that the mean iterations reduced as the propor-
tion of negative edges increased, and the standard deviation rises
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Indegree Closeness Betweenness Eigenvector (RS) Eigenvector (PW)

Mean SD Mean SD Mean SD Mean SD Mean SD

Indegree 0.00 0.00 49.57 34.92 195.90 75.08 280.90 123.01 276.73 121.54
Closeness 49.57 34.92 0.00 0.00 263.17 104.47 415.83 252.23 410.40 250.14
Betweenness 195.90 75.08 263.17 104.47 0.00 0.00 353.57 139.65 354.20 140.08
Eigenvector (RS) 280.90 123.01 415.83 252.23 353.57 139.65 0.00 0.00 4.93 4.98
Eigenvector (PW) 276.73 121.54 410.40 250.14 354.20 140.08 4.93 4.98 0.00 0.00

Table 2: The mean and standard deviation Kendall’s distance between five graph centrality methods over 30 randomly generated

scale free graphs containing 1000 vertices.

Method
Number of Vertices

101 102 103 104 105 106 107

Mean Computation Time (seconds)

Random Surfer 0.128 0.127 0.137 0.179 0.741 6.265 61.262
Power Walk 0.133 0.132 0.144 0.194 0.925 7.565 77.447

Standard Deviation Computation Time (seconds)

Random Surfer 0.016 0.007 0.006 0.009 0.058 0.266 3.317
Power Walk 0.024 0.007 0.015 0.009 0.080 0.296 10.389

Table 3: Mean and standard deviation computation times from 30 random graphs of seven different sizes (101 to 107), when com-

puting eigenvector centrality using the power method.

and then falls. An interesting feature of the Power Walk method
is if a constant is added to a column of the adjacency matrix, it
does not affect the stationary distribution. We can see this using
the following:

ti,j =
βei,j+x

∑n

j=1 β
ei,j+x

=
βei,jβx

∑n

j=1 β
ei,jβx

=
βei,j

∑n

j=1 β
ei,j

Therefore if we have an adjacency matrix A containing 0s and 1s,
and change all of the 1s to -1s, it is equivalent to changing A to
1 − A, which also has the effect of increasing k in equation 6.
Increasing k provides us with a smaller β and hence lowers the
number of iterations requires. Having a fraction of the edges as
negative would have a partial effect on β and so would explain the
gradual reduction in iterations as the proportion of negative edges
increases. The exact relationship between the magnitude of the
second eigenvalue and β needs to be investigated in later work.

5. CONCLUSION
Measures of graph centrality provide us with an indication of the

importance/popularity of each vertex. To be an effective measure
of centrality for uncontrolled graphs such as the World Wide Web,
social networks and academic citation graphs, three criteria must be
satisfied 1) the score correlates with vertex importance/popularity,
2) computation of the score scales well to large graphs, and 3) the
scores are difficult to manipulate by individuals. Eigenvalue Cen-
trality was modified to produce the Random Surfer model to satisfy
these three criteria.

When analysing the Web, social networks and academic cita-
tions, we assume that each directed edge from a vertex is an en-
dorsement to the vertex linked to. Sentiment analysis of these
graphs has shown that this assumption is not always true and that
edges can have negative weight. Unfortunately, the existing mea-
sures of centrality are limited to graphs with non-negative edge
weights.

In this article we introduce Power Walk, a novel method of com-
puting graph transition probabilities from graphs with real weighted
edges. We show that it satisfies the desired properties, and that
its computation time and centrality ranking is similar to when us-
ing the Random Surfer model to obtain PageRank for non-negative
matrices.

We also examined the convergence and stability of the Power
Walk centrality scores and found that they are a function of the
Power Walk parameter β, and can be estimated using properties of
the probability transition matrix.
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