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a b s t r a c t

Comparing, clustering and merging ellipsoids are problems that arise in various applications, e.g.,
anomaly detection in wireless sensor networks and motif-based patterned fabrics. We develop a theory
underlying three measures of similarity that can be used to find groups of similar ellipsoids in p-space.
Clusters of ellipsoids are suggested by dark blocks along the diagonal of a reordered dissimilarity image
(RDI). The RDI is built with the recursive iVAT algorithm using any of the three (dis) similarity measures
as input and performs two functions: (i) it is used to visually assess and estimate the number of possible
clusters in the data; and (ii) it offers a means for comparing the three similarity measures. Finally, we
apply the single linkage and CLODD clustering algorithms to three two-dimensional data sets using
each of the three dissimilarity matrices as input. Two data sets are synthetic, and the third is a set of real
WSN data that has one known second order node anomaly. We conclude that focal distance is the best
measure of elliptical similarity, iVAT images are a reliable basis for estimating cluster structures in sets
of ellipsoids, and single linkage can successfully extract the indicated clusters.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction: clustering and ellipsoids

Hyperellipsoids (more simply, ellipsoids) occur in many areas
of applied mathematics. For example, level sets of Gaussian
probability densities are ellipsoids [1]. Ellipsoids also appear often
in clustering [2–4] and classifier design [1,5–7]. Please be careful
to distinguish the present work, wherein the input data objects
are ellipsoids, from clustering algorithms such as that of Dave and
Patel [4], where the output of clustering input sets of object
vectors in p-space results in ellipsoidal prototypes.

The application that motivates the present work is the use of
ellipsoids for anomaly detection. This problem occurs, for
example, in wireless sensor networks (WSNs) [8–12] and motif-
based patterned fabric defect detection [13]. In particular, the
authors of [10] model the data collected at individual sensor
nodes by sample-based ellipsoids; in [11] they develop a method
for clustering sets of ellipsoids in this context; and in [12] visual
tendency of assessment is used to establish the possible presence
of clusters of ellipsoids. For example, Fig. 1 is a plan view of the 54
node IBRL (Intel Berkeley Research Lab) WSN installed on March
1, 2004.

Fig. 2 is a set of ellipses generated by summarizing data
collected at the 54 nodes of the IBRL. This data is available at the
IBRL-Website: http://db.lcs.mit.edu/labdata/labdata.html. The
data used in this paper were collected from 8:00 AM to 8:00 PM
from the first 18 days of March in 2009. The data consist of
668,830 (t¼temperature, h¼humidity) pairs, each pair labeled as
being collected at one of the 54 nodes. The cardinality for each of
the 54 data sets was not quite the same because some of the sets
had a few values missing. We conditioned the data by first
rounding up the (t, h) values, and then removing duplicate
vectors. Each duplicate was weighted by the number of times
duplicated, resulting in a total of 8503 weighted pairs. Finally, the
sample mean and sample covariance matrix of the vectors
associated with each node resulted in the set of 54 ellipses as
shown in Fig. 2. We call this data set E54. During this collection
period, node 17 showed abnormal behavior, as manifested by the
visually apparent ‘‘more horizontal’’ ellipse that stands in stark
contrast to the other 53 ellipses. This is a real data example of a
second order WSN anomaly as defined in [10–12].

The data in Fig. 2 offer a glimpse of our objectives in this
article. First, we develop three measures of similarity for pairs of
ellipsoids that (in principle) enable us to look for clusters of
ellipsoids. Second, we image reordered versions of the dissim-
ilarity matrices induced on ellipsoidal pairs by the similarity
measures with the recursive iVAT algorithm [14,15]. The images
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are used to assess whether or not the data do contain clusters, and
if so, how many? Using estimates of c, the number of clusters in
the data found by iVAT and a method based on the ordered
eigenvalues of D, we find ’’optimal’’ clusters with the single linkage
(SL, [16]) and CLODD [37] clustering algorithms. Ideally, anoma-
lies in the sets of ellipsoids will not be grouped with (sets of)
typical ellipsoids. We will illustrate this procedure with three
numerical examples that use both real and artificial WSN data.

This paper is organized as follows. Section 2 reviews the
essential algebra and geometry of ellipsoids. Sections 3, 4, and 5
contain definitions and proofs for three measures of similarity or
dissimilarity on pairs of ellipses: compound normal and transfor-
mation energy similarities, and focal distance dissimilarity. Section
6 discusses the recursive iVAT algorithm for displaying reordered
dissimilarity images. Section 7 presents iVAT images for the three
data sets we use to illustrate our method. Section 8 discusses
clustering in the dissimilarity data produced by each measure
with the SL and CLODD algorithms. Section 9 offers our
conclusions and some ideas for future research.

2. Similarity measures for pairs of ellipsoids

Let vectors x,mARp, and let AARp"p be positive definite. The
quadratic form Q ðxÞ ¼ xT Ax is also positive definite, and for fixed
mARp, the level set of Q ðx%mÞ ¼ ðx%mÞT Aðx%mÞ ¼ :ðx%mÞ:2

A, for

scalar t240, is

EðA,m; tÞ ¼ fxARp9:x%m:2
A ¼ t2g ð1Þ

Geometrically, EðA,m; tÞ is the (surface of the) hyper-ellipsoid
in p-space induced by A, all of whose points are the constant A
distance (t) from its center m. Sometimes t is called the ‘‘effective
radius’’ of EðA,m; tÞ. When A¼ Ip, EðA,m; tÞis the surface of a hyper-
sphere with radius t. Henceforth, we may omit the prefix ‘‘hyper’’,
using ellipsoid and sphere for all cases, pZ2. Eq. (1) defines an
infinite family fEðA,m; tÞ : t40g of concentric ellipsoids parame-
terized in t. Each member of this family can be normalized,
:x%m:2

A=t2 ¼ 1. This simply shifts attention to the scaling of A
(A/t2’A) without loss of generality.

Suppose we have two ellipsoids in p-space, Ei and Ej, that have
effective radii ti and tj, centers [means] mi and mj and [inverse of
covariance] matrices Ai and Aj. First, normalize Ei and Ej, Ai=t2

i ’Ai

and Aj=t2
j ’Aj. We want a measure of similarity between the two

ellipsoids. Let s(Ei, Ej) denote the similarity between Ei and Ej.
There are many definitions of similarity functions in the
literature. For our purposes the following properties are used:

ðs1aÞ sðEi,EiÞ ¼ 1 8 i ð2aÞ

ðs1bÞ sðEi,EjÞ ¼ 13Ei ¼ Ej ð2bÞ

ðs2Þ sðEi,EjÞ ¼ sðEj,EiÞ 8 ia j ð3Þ

ðs3Þ sðEi,EjÞ40 8 i,j ð4Þ

Functions that satisfy (2a), (3), and (4) are weak similarity
measures. Functions that satisfy (2b), (3), and (4) are strong
similarity measures. Strong similarity measures are also weak, and
are simply called similarity measures. Weak similarity measures
correspond to pseudometric dissimilarities.

An ellipsoid E(A, m; 1) is defined by its matrix A and center m.
Any ellipsoid can be created by applying a scaling, rotation, and
translation of a unit (hyper)sphere. The matrix A scales and
rotates the underlying space so that it maps the ellipse into a unit
sphere (hence, :x%m:2

A ¼ 1for every point x on the surface of the
ellipsoid). Scaling a spheroid is done by matrix multiplication
with a scaling matrix S,

S¼

s1 0 & & & 0

0 s2 & & & 0

0 & & & & ^
0 & & & 0 sp

2

66664

3

77775
ð5Þ

Fig. 1. The IBRL wireless sensor network.
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Fig. 2. Ellipsoidal summaries for 54 nodes in the IBRL: node 17 is the visually
anomalous ellipse.
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where sk is the scaling factor for dimension k, 1rkrp. Rotation
through an angle y is accomplished by matrix multiplication with
a unitary rotation matrix R (RT¼%R%1), which in p¼2 space has
the form

R¼
cosy %siny
siny cosy

! "
ð6Þ

Any point z in the unit sphere can be mapped to an ellipsoid
via scaling, rotation, and shift:

z-x¼ RSzþm, :z:2
Ar1 ð7Þ

Now we are ready to discuss measures of similarity on pairs of
ellipsoids. We begin with a measure that combines the three
elements of similarity for geometric structures of this type.

3. Compound similarity

We use subscripts 1 and 2 for a pair of ellipsoids. Our first measure
of similarity is a compound measure, the product of three exponential
factors that satisfies requirements (2a), (2b), (3), and (4) for strong
similarity. This measure of similarity is built by considering the
location, orientation, and shape of an ellipse. The geometric rationale
and limit behavior of each factor are discussed next.

Location: Positional similarity for (E1, E2) is a function of their
mean separation, i.e., the distance :m1%m2: between their
centers. Use any vector norm on Rp to define

g1ðE1,E2Þ ¼ e%:m1%m2: ð8Þ

The function g1 satisfies (3) and (4), and E1 ¼ E2 ) e%:m1%m2: ¼ 1,
but m1¼m2 does not imply that E1¼E2 (see the left view of Fig. 3). In
the limit, e%:m1%m2:-0 as :m1%m2:-1. The center and right
views in Fig. 3 illustrate the most common situation for sample-based
ellipsoids, viz., that they have different effective radii, orientation, and
centers.

Orientation: For E1¼(A1,m1,1) and E2¼(A2,m2,1) we define the
orientation of each ellipse using the rotation matrices R1 and R2,
the eigenvector matrices of A1 and A2. The angle of rotation
between the two ellipsoids is found by projecting the basis
vectors of R1 onto the associated basis vectors of R2, where the
association is established by ranking each basis with the ordered
eigenvalues of its matrix. The angles are found by calculating the
vector of angles between associated eigenvectors as

y¼ arccosðdiagðRT
1R2ÞÞ ð9Þ

Rotational similarity between E1 and E2 is assessed by
measuring the set of angles between the associated eigenvector
pairs. More specifically, let sinh¼ ðsiny1,. . .,sinypÞT and define

g2ðE1,E2Þ ¼ e%:sinh: ð10Þ

The function g2 satisfies (3) and (4). When E1¼E2, their
associated eigenvectors are parallel; hence E1 ¼ E2 ) e%:sinh: ¼ 1.
When the principal vectors are perpendicular, g2 takes its
maximum value, which is e%:sinh: ¼ e

ffiffi
p
p

when the norm is

Euclidean. But, again, h¼0 does not imply that E1¼E2 (e.g., see
the left view of Fig. 3).

The final piece in our similarity puzzle is shape. The eigenstruc-
ture of A is the key to assessing the shape of E(A,m;1). Invariants of A
to rotation and translation that might be useful in comparing the
shapes of two ellipsoids include: tr(A) (sum of the eigenvalues¼total
variance); det(A) (product of the eigenvalues¼generalized var-
iance); scatter volume (a function of det(A)); and normalized scatter
volume (a ‘‘decorrelated’’ function of det(A)). Each of these functions
has some merit, but also a deficiency. For example, let p¼3 and
suppose that {1, 1, 27} and {3, 3, 3} are the eigenvalues for E1 and E2.
The determinants and scatter volumes for E1 and E2 are equal, but E1

and E2 have quite different shapes. E1 is circular in cross section, but
very elongated in its principal direction, while E2 is a sphere. We
turn to a different function of the eigenvalues to characterize shape
similarity for a pair of ellipsoids.

Let a¼{a1ra2r?rap} and b¼{b1rb2r?rbp} be the
ordered eigenvalues of A1 and A2, and recall that the semi-axial
length of E1¼E(A1, m1; 1) from m1 to its surface in the kth
direction is 1=

ffiffiffiffiffiak
p

, and likewise for E2. If the ellipsoids have the
form E¼E(A, m, t), we adjust the eigenvalues to account for the
transformation A/t2’A that normalizes them to the form E(A, m,

1). Letting a( ¼ ð1= ffiffiffiffiffiffia1
p

,. . .,1=
ffiffiffiffiffiap
p ÞT and b( ¼ ð1=

ffiffiffiffiffiffi
b1

p
,. . .,1=

ffiffiffiffiffiffi
bp

q
ÞT ,

define, for any vector norm,

g3ðE1,E2Þ ¼ e%:a
(%b(: ð11Þ

Function g3 satisfies (3) and (4), and E1¼E2) g3(E1,E2)¼1,
because the (ordered) eigenvalues of the two ellipsoids are equal,
but again, the converse is not guaranteed. Switching notation
from (1, 2) to (i, j), we define the product of g1, g2, and g3 as the
compound similarity between the ellipsoid pair (Ei, Ej):

scðEi,EjÞ ¼ e%:mi%mj:
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

a|fflfflfflfflfflffl{zfflfflfflfflfflffl}
location

e%:sinh:
|fflfflfflffl{zfflfflfflffl}

b|fflfflfflffl{zfflfflfflffl}
orientation

e%:a
(%b(:

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
c|fflfflfflfflfflffl{zfflfflfflfflfflffl}

shape

¼ e% :mj%mj:þ:sinh:þ:a(%b(:ð Þ ð12Þ

We summarize the properties of sc(Ei, Ej) in

Proposition 1. Let Ei ¼ EðAi,mi; tiÞ and Ej ¼ EðAj,mj; tjÞ be (hyper)-
ellipsoids in p-space. Let the eigenvalue–eigenvector pairs for Ei and
Ej be {0ra1ra2r?rap}2{u1, u2, y, up} and {0rb1rb2r
?rbp}2{v1, v2, y, vp}. Let a¼(a1¼am, y, ap¼aM)T, b¼(b1¼
bm, y, bp¼bM)T, a( ¼ ð1= ffiffiffiffiffiffia1

p
,. . .,1=

ffiffiffiffiffiap
p ÞT , and b( ¼ ð1=

ffiffiffiffiffiffi
b1

p
,. . .,

1=
ffiffiffiffiffiffi
bp

q
Þ . Define h as the angle between eigenvector pairs ui and vi,

1r irp. Then

ðs1Þ scðEi,EjÞ ¼ 13Ei ¼ Ej ð13Þ

ðs2Þ scðEi,EjÞ ¼ sðEj,EiÞ 8 ia j ð14Þ

ðs3Þ scðEi,EjÞ40 8 i,j ð15Þ

t

t t
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t

m
mm
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m

Fig. 3. Different effective radii and centers for two ellipsoids.
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Proof. First suppose that Ei¼Ej. Then (mi¼mj), yuivi
¼ 01

8 i) y¼ 0, and a
_
¼ b

_
. Thus, the argument of each exponential

factor in (12) is 0, and hence, sc(Ei, Ej)¼1. Now assume that s(Ei,
Ej)¼1. We know that each individual factor in (12) can be 1, and yet,
EiaEj. However, taking the factors jointly as a product will insure
that Ei¼Ej. To see this, view (12) as the product of the 3 positive
numbers a, b, and c, so sc(Ei, Ej)¼abc¼1. We show that all three
factors are 1 by contradiction. Suppose, to the contrary, that there is
a pair of reciprocals, say a and b¼1/a, such that ab¼1 and neither a
nor b is 1. The factors a, b, and c are valued in (0, 1], so if ba1, then
bo1. From this it follows that a¼1/b41. This contradicts the fact
that aA(0,1]. The same argument holds for any pair of factors, so we
conclude that when the product at (12) is 1, a¼b¼c¼1.

To complete the proof, equate each factor in (12) to 1. For

example, e%:mi%mj: ¼ 1 3:mi%mj:¼ 03mi ¼mj, which shows

that Ei and Ej have the same means. Similar arguments show that

these two ellipsoids also have equal orientations, and equal

eigenstructures (shapes). Thus, while any one of the three factors

being 1 does not guarantee that Ei¼Ej, when all three factors take

the value 1, Ei must equal Ej. This proves (13). We finish the proof

by noting that properties (14) and (15) are true, since each factor

is symmetric and valued in (0, 1]. &

Proposition 1 shows that sc is a similarity measure on pairs of
(hyper)ellipsoids. However, we discovered during initial experi-
ments using this measure with the Euclidean norm in the
exponent that it was quite sensitive to small changes in the
location of the mean (center) of Ei and/or Ej. Using a statistical
distance for normalization of sc reduces this problem. Accordingly,
the measure of similarity we will study is

scnðEi,EjÞ ¼ e
% :mi%mj:

2
ðAi þ Aj Þ

%1 þ:sinh:þ:a(%b(:
% &

ð16Þ

where the measure of distance between mi and mj is the
Mahalonobis distance induced by the pooled (covariance) matrices
of E1 and E2, viz., :mi%mj:

2
ðAiþAjÞ

%1 ¼ ðmi%mjÞ
T ðAiþAjÞ

%1ðmi%mjÞ.
This change does not alter the proof of Proposition 1, so scn is a
compound, normalized similarity measure.

4. Transformation energy similarity

Consider each ellipsoid as having its own space spanned by its
eigenvector basis with origin at its center. We can construct a
function that maps a point from one ellipsoid space to another via
the common space between them. A point in the space of ellipsoid
Ei can be mapped to the common co-ordinate space by scaling the
point by S%1

i , reversing the rotation by R%1
i , then shifting the point

away from the origin by translation by mi. Within this common
space the point can then be mapped into the space of Ej by shifting
the point by mj, rotating by Rj and scaling by Sj. The mapping is
summarized as

xj ¼ f ðxi9Ei,EjÞ ¼ SjRjðR%1
i S%1

i xi%miþmjÞ

¼ SjRjR
%1
i S%1

i|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Mij

xiþSjRjðmj%miÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
dij

¼Mijxiþdij ð17Þ

where Ei ¼ EðRiS
%2
i RT

i ,mi;1Þ, Ej ¼ EðRjS
%2
j RT

j ,mj;1Þ. The norm of this
function is a measure of the ‘‘amount of energy expended’’ to
make the transformation,

:f ðEi,EjÞ:2 ¼ max|ffl{zffl}
zARp

:z:2 ¼ 1

:f ðz9ðEi,EjÞ:2

' (
ð18Þ

Since (18) is not necessarily symmetric in the arguments of f,
:f ðEi,EjÞ:2a:f ðEj,EiÞ:2, we account for asymmetry by utilizing the
norms in both directions. Thus, we define the transformation
energy similarity function as

steðEi,EjÞ ¼ 1

,
max|ffl{zffl}

zARp

:z:2 ¼ 1

:f ðEi,EjÞ:2,:f ðEj,EiÞ:2

) *' (
ð19Þ

Proposition 2. ste(Ei, Ej) is a similarity function satisfying Eqs. (2),
(3), and (4).

Proof. We begin the proof by stating and proving two results that
concern the spectral norm :A:2 of a matrix A. &

Lemma 1. If A is any invertible matrix, then max :A:2,:A%1:2

' (
Z1.

Proof. A is invertible, so its singular values are all positive. Let
0os1rs2r?rst be the singular values of A, so 0o1=st r
1=st%1r & & &r1=s1 are the singular values of A%1. The spectral

norm of A is its largest singular value, so max :A:2,:A%1:2

' (
¼

maxfst ,1=s1g. Either st Z1) max st ,1=s1
' (

Z1, or st o1)
1=s141) maxfst ,1=s1g41. &

Lemma 2. If A and B are invertible matrices
andmax :B%1A:2,:A%1B:2

' (
¼ 1) A%1B¼ ðB%1AÞT .

Proof. Let X¼A%1B have singular values 0os1rs2r?rst, so
X%1¼B%1A has singular values 0o1=st r1=st%1r & & &r1=s1.
Ifst ¼ :X:2 ¼ 1) s1r1) 1=s1 ¼ :X%1:2Z1. Suppose that
st ¼ :X:2 ¼ 1. Then s1r1) 1=s1 ¼ :X%1:2Z1. If 1=s141, then
max :B%1A:2,:A%1B:2

' (
41, which contradicts the hypothesis.

Thus s1¼1)sk¼1 8 k, and we have the identity matrix I for the
diagonal part of the singular value decomposition of X, i.e.,
X¼U[I]VT¼UVT¼where U and V are unitary. Thus XTX¼XXT¼ I and
X%1¼XT. &

Now suppose that Ei¼Ej, the scaling and rotation matrices and
ellipsoid centers are equal, Si¼Sj, Ri¼Rj and mi¼mj, Mij¼ Ip is the
p"p identity matrix, dij¼0, and so ste(Ei, Ej)¼1. Conversely, it is
not obvious that ste(Ei, Ej)¼1) Ei¼Ej. Lemma 1 yields steðEi,EjÞ ¼

1=max : f ðEi,EjÞ:2,:f ðEj,EiÞ:2

) *' (
¼ 1=max :Mij:2,:M%1

ij :2

% &n o
r1:

Thus, steðEi,EjÞ ¼ 1) steðEi,EjÞ ¼ 1=max :f1ðEi,EjÞ:2,:f1ðEj,EiÞ:2

' (

and hence mi¼mj. From this we can also deduce that 0rste(Ei, Ej)

r1, and hence, steðEi,EjÞ ¼ 13max :f1ðEi,EjÞ:2,:f1ðEj,EiÞ:2

' (
¼ 1

Finally, this implies Ei¼Ej by applying Lemma 2 to f1ðEi,EjÞ ¼

: SjRjR
%1
i S%1

i :2 which yields ðSjRjR
%1
i S%1

i Þ
T SjRjR%1

i S%1
i ¼ I, whence

ðS%1
i Þ

T ðR%1
i Þ

T RT
j ST

j SjRjR
%1
i S%1

i ¼ I: ð20Þ

We know that Si and Sj are diagonal, and Ri and Rj are unitary, so
we have two cases. If Sj¼ I, Eq. (20) simplifies to ðS%1

i Þ
T S%1

i ¼ I)
Si ¼ I. If SjaI, we must have S%1

j ¼ RjR
%1
i S%1

i in order for Eq. (20) to
hold. This implies that Sj¼Si and Rj¼Ri. Therefore, if s(Ei, Ej)¼1, then
either: Si¼Sj¼ I and mi¼mj, implying that Ei and Ej are spheres,
which are not affected by rotation, so Ei¼Ej; or Si¼Sj, Ri¼Rj, mi¼mj,
so that again, Ei¼Ej. To complete the proof, we see from (19) that
ste(Ei, Ej)¼ste(Ej, Ei) for all iaj, and since this similarity function is the
inverse of a norm, ste(Ei, Ej)Z0 for all iaj. &

Remark. If (18) must be solved many times, this problem can
become computationally expensive. When the number of com-
parisons needed is large, we can replace (19) by an approximation

to ste(Ei, Ej), which avoids this difficulty by observing that :g1:2r
:g1þg2:2r:g1:2þ:g2:2. This suggests taking :f ðEi,EjÞ:2 )
:f1ðEi,EjÞ:2þ:f2ðEi,EjÞ:2, where f1ðEi,EjÞ ¼Mijxi and f2(Ei,Ej)¼dij as
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in (17). The value of each term in this approximation is given by

the largest singular value of Mij, :f1ðEi,EjÞ:¼ :Mijxi:¼ sij,1 and
likewise for the second term. Using the Euclidean norm for dij

then gives

st ~e ðEi,EjÞ ¼ 1=max sij,1þ:dij:2,sji,1þ:dji:2

) *' (rsteðEi,EjÞ

r1=maxfsij,1,sji,1g ð21Þ

with equality when :dij:2 ¼ :dji:2, or, equivalently, mi¼mj.

The approximation function st ~e ðEi,EjÞ satisfies requirements (3)

and (4), and it is clear that when Ei¼Ej st ~e ðEi,EjÞ ¼ 1. However,

ste(Ei, Ej) is an upper bound on st ~e ðEi,EjÞ, so ste(Ei, Ej)¼1 does not

guarantee that st ~e ðEi,EjÞ ¼ 1. We do not have an estimate for the

tightness of this upper bound, but we did compute this

approximation in all of our numerical experiments as a check

on the exact value, and, in most cases, the approximation is pretty

close to its upper bound. So, when n is large, the approximation

ste ) st ~e is a good alternative to using (19) directly.

5. Focal similarity

Our third measure of similarity begins by recalling that every
plane ellipse can be constructed by tracing the curve whose
distance from a pair of foci f1 and f2 is some positive constant c(t),
which depends on the effective radius t.

This construction is shown for a two-dimensional ellipse in Fig. 4,
with effective radius t so that p(t)+q(t)¼c(t) for the ellipse E(A,m; t).
The foci always lie along the major axis of the ellipse, which is the
linear span of the eigenvector of A corresponding to the maximum
eigenvalue. We denote the line segment with endpoints f1 and f2 by
f12, and call this the focal segment of E(A,m; t).

If {amraM} are the minimum and maximum eigenvalues of A
with corresponding orthogonal eigenvectors fum,uMg, the loca-
tions of the foci are f1,2 ¼m71

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððaM%amÞ=aMamÞ

p
uM. The focal

similarity between E1 and E2 is defined as the average of a set of
four distances. Each component is defined by a distance to one of
the focal segments e12 or f12.

Let dðx,yÞ ¼ :x%y: be the Euclidean distance between vectors
in x,yARp. We have two focal segments, e12 with endpoints e1

and e2, and f12 with endpoints f1 and f2. We compute four default
distances:

d1 ¼minfdðe1,f1Þ,dðe1,f2Þg ð22Þ

d2 ¼minfdðe2,f1Þ,dðe2,f2Þg ð23Þ

d3 ¼minfdðf1,e1Þ,dðf1,e2Þg ð24Þ

d4 ¼minfdðf2,e1Þ,dðf2,e2Þg ð24Þ

One or more of the values in (22)–(25) may be replaced using
the following heuristic. For each foci ‘‘f’’, if the orthogonal
projection of ‘‘f’’ to the linear span of the opposing maximal
eigenvector falls on the opposing focal segment then we replace
the appropriate default distance by this distance; otherwise we
find the minimum distance between ‘‘f’’ and the two opposing foci
and use it in one of the Eqs. (22)–(25). In other words, if the
orthogonal projection does not fall on the opposing focal segment
it will not be considered in the calculation. We now define the

focal distance between the ellipsoids E1 and E2 as the average of
these four distances:

dfdðE1,E2Þ ¼ disðe12,f12Þ ¼
d1þd2þd3þd4

4
ð25Þ

Now let E1(A1, m1; t1) and E2(A2, m2; t2) be non-degenerate
ellipsoids in Rp. Let a¼{a1ra2r?rap} and b¼{b1rb2r?r
bp} be the eigenvalues of A1 and A2. Adjust the eigenvalues to

a( ¼ ð1= ffiffiffiffiffiffia1
p

,. . .,1=
ffiffiffiffiffiap
p ÞT and b( ¼ ð1=

ffiffiffiffiffiffi
b1

p
,. . .,1=

ffiffiffiffiffiffi
bp

q
ÞT . There are

p(p%1)/2 focal segments for the two-dimensional ellipses
spanned by each pair of eigenvectors of E1 and E2. Thus, there
are (p%1) ‘‘ordered’’ focal distances between pairs of focal
segments of the two ellipsoids. We define the generalized focal
distance between E1 and E2 as the average of the plane focal
distances:

dgfdðE1,E2Þ ¼

Pp%1

j ¼ 1
disðej,jþ1,fj,jþ1Þ

ðp%1Þ
ð26Þ

Note that when p¼2, (26) reduces to (25). The generalized
focal distance dgfd is almost a metric on pairs of ellipsoids. We say
almost because for the simplest case, p¼2, it can happen that
dfd(E1, E2)¼0 but E1aE2. Recall that a pseudometric on a set X is a
non-negative real-valued function d : X " X/½0,1Þ such that, for
x, y, z in X,

pm1. d(x, x)¼0
pm2. d(x, y)¼d(y, x) (symmetry)
pm3. d(x, z)rd(x, y)+d(y, z) (subadditivity/triangle inequality)

Proposition 3. dfd in (25) is a pseudometric on pairs of
p-dimensional ellipsoids.

Proof. Since each of the four factors in (25) is a metric, their
average is symmetric, and it is easy to check that it also satisfies
the triangle inequality, so pm2 and pm3 hold. Since each factor of
(25) is a metric, pm1 holds for any ellipse, dfd(E1, E1)¼0. To see
that dfd is not positive definite, consider the construction of an
ellipse E1 as shown in Fig. 4, where, for t¼t1, p(t1)+q(t1)¼c(t1).
Now construct a second ellipse E2 with the same focal segment
but a different radius t2, so that for E2, p(t2)+q(t2)¼c(t2). This pair
of ellipses has the same focal segment, so dfd(E1, E2)¼0, but since
c(t1)ac(t2), E1aE2. Hence, dfd is a pseudometric. &

Corollary 1. Let Dfd be a collection of n2 normalized values of dfd in
(25) on n ellipsoids, say [Dfd,ij]¼[dfd(Ei, Ej)/max(s,t, sa t){dfd(Es, Et)}].
Define sfs¼1%dfd. Since dfd is a pseudometric, sfs(Ei, Ej) satisfies
Eqs. (3) and (4). In view of Proposition 3, we know that sfs(Es, Et)¼1
does not imply that Es¼Et, so sfs is not a strong similarity measure.
But sfs satisfies (2a), so it is a weak similarity measure. We call sfs the
focal similarity between Ei and Ej.

Since the generalized focal distance is the average of (p%1)

focal distances that all satisfy Corollary 1, the generalized focal

distance also satisfies the statement made in Corollary 1.

Corollary 2. Let Dgfd be a collection of n2 normalized values of dfd in
(25) on n ellipsoids, say [Dgfd,ij]¼[dgfd(Ei, Ej)/max(s,t, sa t){dgfd

(Es, Et)}]. Define sgfs¼1%dgfd. Since dgfd is a pseudometric, sgfs(Ei,
Ej) satisfies Eqs. (3) and (4). In view of Proposition 3, we know that
sgfs(Es, Et)¼1 does not imply that Es¼Et, so sgfs is not a strong
similarity measure. But sgfs does satisfy (2a), so it is a weak similarity
measure. We call sgfs the generalized focal similarity between Ei

and Ej.
Fig. 5 depicts a few cases for the four distances comprising (25),

where for ease of interpretation, we show focal segments and

f1 f2

p(t)
span (uM)

m

q(t)

t

Fig. 4. Focal points f1 and f2 and focal segment f12 of E(A, m; t).

M. Moshtaghi et al. / Pattern Recognition 44 (2011) 55–69 59



distances without notation. The solid green lines represent endpoint
distances, and the double red lines are distances of orthogonal
projections that land on opposing focal segments (so red lines may
represent ‘‘replacement distances’’ for each of (22)–(25)).

Fig. 5(a) has four equal distances (or put another way, one
distinct distance); (b) and (c) have two distinct distances; (d) and
(e) have three distinct distances; and (f) has four distinct
distances. There are other cases, but these suffice to explain the
concept. While (25) appears to be quite different from the first
two similarity measures, the focal distance does account for
location, shape, and orientation.

Example 1. To conclude this section we compare scn, ste and sfs

with five simple examples. Normalization of Ei and Ej via Ai=t2
i ’Ai

and Aj=t2
j ’Aj is always done for synthetically generated ellip-

soids. For sample-based ellipsoids, t is not known, but is not
needed for a complete analysis. We used Matlab’s constrained
nonlinear optimization, fmincon, which is a Trust-Region Reflec-
tive Algorithm discussed in [36], when computing the transfor-
mation energy similarity function at (18).

Table 1 contains five pairs of ellipses, and shows beneath them
the value of each similarity coefficient for each pair. Look at these
five examples, decide for yourself, which pairs of ellipsoids are
‘‘most different’’ and ‘‘most similar’’, and then compare your
assessment to the ones rendered by the numerical indices, whose
maximums and minimums are highlighted in boldface type.

Fig. 6 plots the values of the three coefficients for cases A–E
shown in Table 1. On the horizontal axis the ticked labels are A¼1,
B¼2, C¼3, D¼4, E¼5. All three measures agree that case D
exhibits the least similar pair, and most observers would agree
with this assessment. But while the three indices all agree that
case E is the most similar pair, our guess is that most observers

would disagree with this result, and instead choose pair C as the
most similar. We think the explanation for the apparent
discrepancy between human observation and mathematical
assessment lies with the properties of the ellipses. Case E
features two ellipses with the same means, but different shapes
and orientations, while Case C has a pair of ellipses with the same
shape and orientation, but different means. This suggests that the
three models weight central tendency more heavily than humans
do. The important point is that all three measures agree—here.
But we shall see below that they are quite different on more
complex sets of ellipses.

There may be (perhaps often will be) many ellipse pairs, which
have very nearly the same or even equal similarity values that
have very different spatial configurations using any of these
measures, even when p¼2. (We know this to be the case for the
focal similarity.) To see that it can also happen for the other
measures, consider scn¼abc, the product of three numbers a, b,
and c all of which lie in [0,1]. Suppose scn¼0.5 and a¼1. Then (bc)
must equal 0.5 with b and c in (0,1], but are otherwise
unconstrained, so there are many ellipse pairs – all different
from one another – that result in this single value. While this
observation seems to deflate the value of measuring similarity by
any of these functions, in practice we will rarely, if ever,
encounter a ‘‘tie’’, wherein two quite different ellipse pairs yield
the same value of any of these measures.

δ1 = δ2 = δ3 = δ4

(5a)

δ1 ; δ2 = δ3 = δ4

(5c)

δ1 = δ2 ; δ3 = δ4

(5b)

δ1 ; δ2 ; δ3 ; δ4

(5f)

δ1 ; δ2 ; δ3 = δ4

(5e)

δ1 ; δ2 ; δ3 = δ4

(5d)

Fig. 5. Several cases of different focal distance components of dfd at (25).

Table 1
Some examples of ellipsoidal similarity.

A B C D E

scn(Ei, Ej)¼0.018 scn(Ei, Ej)¼0.001 scn(Ei, Ej)¼0.024 scn(Ei, Ej)¼0.000 scn(Ei, Ej)¼0.031
ste(Ei, Ej)¼0.148 ste(Ei, Ej)¼0.122 ste(Ei, Ej)¼0.16 ste(Ei, Ej)¼0.07 ste(Ei, Ej)¼0.355
sfs(Ei, Ej)¼0.460 sfs(Ei, Ej)¼0.225 sfs(Ei, Ej)¼0.469 sfs(Ei, Ej)¼0.00 sfs(Ei, Ej)¼0.737

1 2 3 4 5
0

0.2

0.4

0.6

0.8
Focal Sim
Compound Sim
Energy Transform Sim

Fig. 6. Similarity coefficients for the five ellipse pairs in Table 1.
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6. Tendency assessment with VAT and iVAT

Our aim is to use similarity and dissimilarity measures and
their iVAT images to find clusters in sets of ellipsoids. Before
considering this specific problem, we introduce some concepts
from clustering theory that are needed to proceed with our
objectives. Clustering is the problem of partitioning a set of
unlabeled objects O¼{o1, y, on} into groups of similar objects
[1,7,16–20]. The field comprises three canonical problems (CPs).
(CP1) is assessment: prior to finding any clusters, we ask—are
there clusters in O; if so, how many? (CP2) is clustering: what are
the clusters in O? (CP3) is validation: are the found clusters ‘‘good’’
in any useful or meaningful way? When oiAO is represented by
xiARp, X¼{x1, y, xn} is an object data representation of O. The
kth component of xi is the kth feature (e.g., height, hair color,
number of legs, etc.) of oi. When relational values between pairs of
objects are available, we have relational data. Any relation r on
O"O is representable by a square matrix Rn"n¼[rij], where
rij¼r(oi,oj) is the relationship between oi and oj, 1r i, jrn. X can
be converted into dissimilarity data Dn"n ¼ ½dij+ ¼ :xi%xj:

+ ,
using

any norm on Rp. Similarity data Sn"n are always convertible to
dissimilarity data D using simple transformations such as
D¼[1]%S. This is the method we use for our examples; see [21]
for other methods.

Our approach to clustering ellipsoids is based on visual
assessment. Visual methods vary greatly in complexity and
computational cost from simple techniques such as histograms
and box-and-whisker plots to those implemented in larger
interactive software systems such as the IBM Open Visualization
Data ExplorerTM (http://www.research.ibm.com/dx/). A classic
reference for the principles of effective visual display is [22].
Many useful data mining and visualization methods are covered
in [23,24] is a nice reference for the practical application of some
of the known techniques, and [25] contains some classic
approaches for visual analysis in multidimensional object vector
data.

The visual representation of structure in unlabeled dissim-
ilarity data has a long history. Tryon [26] paved the way for this
branch of clustering when he introduced visual assessment and
aggregation of hand-rendered profile graphs for all three
problems in 1939. Cattell [27] first depicted clusters in pairwise
dissimilarity data about the objects in O as an n"n image.
Important advances in visual clustering include Sneath [28],
Floodgate and Hayes [29], Ling [30], and the VAT/sVAT/coVAT/
iVAT papers [31–35]. The common denominator in all these
methods is the reordered dissimilarity image (RDI). The intensity of
each pixel in an RDI corresponds to the dissimilarity between the
addressed row and column objects. An RDI is ‘‘useful’’ if it
highlights potential clusters as a set of ‘‘dark blocks’’ along its
diagonal. Each dark block represents a group of objects that are
fairly similar. We use recursive iVAT to produce RDIs in the
sequel.

VAT [31] reorders an input dissimilarity matrix D-D* and
displays a grayscale image I(D*) whose ijth element is a scaled
dissimilarity value between objects oi and oj. Each element on the
diagonal of the VAT image is zero. Off the diagonal, the values
range from 0 to 1. If an object is a member of a cluster, then it also
should be part of a submatrix of ‘‘small’’ values, whose diagonal is
superimposed on the diagonal of the image matrix. The iVAT
method [34] transforms D-D0 using a path-based distance and
then VAT is applied to D0 to get D0*, resulting in an iVAT image
I(D0*).

Constructing the iVAT matrix D0 matrix as in [34] can be
computationally expensive (O(n3)). The recursive computation of
D0* given here and in [35] does not alter the VAT order of D* and is
O(n2). Recursive iVAT [35] builds the matrix D0* more efficiently

than iVAT by first applying VAT to (D)-D*, and then recursively
using D* to build D0*. The main limitation of iVAT is size;
hardware and software limits Dn"n to about nEO(1 0 4), but for
our application, VAT is well within its working capacities. In
general, the functions arg max and arg min, in Steps 1 and 2, are
set valued, and when the sets contain more than one pair of
optimal arguments, any optimal pair can be selected. The result of
applying VAT to Dn"n is D(n"n; and the displayed output is the VAT
image IðD(n"nÞ. The VAT reordering for D* is stored in array
P¼(P(1), y, P(N)).

VAT/recursive iVAT: visual assessment of tendency [31,34,35]
Input: Dissimilarities Dn"n for O¼{o1, y, on}; (convert similar-

ity data Sn"n as D¼[1]%S).

Step 1: K¼{1, y, n}; select (i, j)Aarg max
pAK ,qAK

fDpqg; set P(1)¼ i;

I¼{i}; and J¼K–{i}.
Step 2: For t¼2, y, n: select (i, j)Aarg min

pA I,qA J
fDpqg; P(t)¼ j;

I’I[{j} and J’J–{j}.
Step 3: Form the ordered dissimilarity matrices

[VAT]: D*: d(ij ¼ dPðiÞPðjÞ for 1r i, jrn.
[iVAT]: Du( ¼ ½0+n"n for r¼2; y; n do

j¼ arg min|fflfflfflfflffl{zfflfflfflfflffl}
k ¼ 1,...,r%1

fD(rkg

Du(rc ¼D(rc , c¼ j
Du(rc ¼maxfD(rj,Du(jcg, c¼ 1,. . .,r%1, ca j

For 2r jrn;io j:Du(ji ¼Du(ij
Step 4: Display I(D*) and I(D0*), scaled so that

max|ffl{zffl}
1r i,jrn

fd(ijg, max|ffl{zffl}
1r i,jrn

fdu(
ij g¼white and 0¼black.

Fig. 7(a) is a scatterplot of a ‘‘boxes and stripe’’ data set similar
to that used in [34,35]. This two-dimensional data has two round
clusters, two rectangular clusters, and one elongated curvilinear
cluster. Most would agree that there are c¼5 clusters in this data.
These object data were converted to D¼ ½dij+ ¼ : xi % xj :

+ ,
using

the Euclidean norm.
The c¼5 visually apparent clusters in Fig. 7(c) are quite clearly

suggested by the 5 distinct dark diagonal blocks in Fig. 7(c), I(D0*),
which is the iVAT RDI of the data. Compare this to view (b), which
is the VAT image I(D*) of these data. I(D*) presents some evidence
supporting the view that this data contains four clusters (the four
clouds are seen in both (b) and (c)), but it misses the stripe cluster.
Interpretation of substructure in the data suggested by I(D0*) is a
significant improvement. Next we turn to the use of iVAT for
assessment of clusters in sets of ellipsoids.

7. Tendency assessment for sets of ellipsoids

Let E denote n ellipsoids in p-space, E¼{E1, E2, y, En}. For (Ei,
Ej)AE" E, compute s * ,ij¼s(Ei, Ej) with any of our three measures
of similarity, and array these n2 values as the n"n similarity
relation matrix S *¼[s * ,ij]. The transformation D *¼[d * ,ij]¼
[1%s * ,ij] yields a dissimilarity relation on E" E. (Actually, we
need not do this for the focal measure, as it is, by definition, a
dissimilarity measure already.) Applying the iVAT algorithm to D *

will yield an RDI that can be used to assess clustering tendencies
of the ellipsoids in E" E. We illustrate the use of iVAT images for
this purpose with three data sets: E30, E40, and E54. The first two
data sets are synthetic (i.e., we constructed these sets of ellipses
to form the clusters they appear to have). E54 is the real IBRL data
set shown in Fig. 2. The synthetic ellipses are generated with t¼1,
so normalization is not needed, and the sample-based ellipses
cannot be normalized because t is unknown.
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Example 2. Fig. 8(a) is the data set E30, which has, by design, a
set of three well-separated clusters, 10 ellipses each. Failure of
one of the measures, algorithms or validity indicators on this
idealized data will raise a caution flag about its utility for this
problem.

The iVAT image in Fig. 8(c) has 3 primary, very dark blocks
along its diagonal, each block of size 10"10, strongly suggesting
that there are c¼3 clusters in E30. The images in (b) and (c) are
much less conclusive. The energy image at (b) has three primary
dark blocks, but clearly indicates substructure within each

primary cluster. Reading down the diagonal from the top, there
are 2, 5, and 3 substructural blocks in (b). The compound image is
even less conclusive: its primary structure suggests perhaps 17
clusters. We will be alert for further evidence that these latter two
measures are less reliable than focal distance.

Example 3. This example is based on the set E40 is shown in
Fig. 9a. This is a much more challenging test for our measures. The
lower left cluster contains 30 ellipses roughly centered at (12, 15).
15 of these ellipses have a horizontal major axis while the other

0 0.5 1 1.5 2 2.5 3 3.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5

c = 5 irregular clusters VAT-ordered image I (D*) iVAT ordered image I (D'*)

Fig. 7. The VAT and iVAT RDIs of the data in view (a).
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iVAT image I (D'*) :
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iVAT image I (D'*) :

Focal Distance D = Dfs

iVAT image I (D'*);
Compound Normal D = Dcn
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c d

Fig. 8. Data set E30 and iVAT images for the three similarity measures.
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15 have a vertical major axis. The other cluster, roughly centered
at (25, 30), has 10 ellipses that are fairly circular. Many observers
see three clusters because of the orientation of the two sets of 15,
but other observers see primary cluster structure at c¼2 because
the set of 30 have a strong and similar central tendency. Does the
visually apparent structure of E40 suggest c¼2? Or is c¼3 a better
choice?

All three iVAT images suggest that we take c¼2 for the primary
structure in the data. The 30"30 block in the focal distance image
(9c) is (albeit faintly) subdivisible into 2 15"15 blocks—that is,
c¼3 is suggested as a secondary interpretation of this data by
focal distance. The other two images are quite fragmented beyond
their primary implication that c¼2. We think that c¼2 and c¼3
are both acceptable interpretations of E40.

Example 4. Fig. 10(a) is a repeat of Fig. 2. Recall that these 54
ellipses represent data collected at the 54 nodes in the IBRL
network, and that the ‘‘horizontal’’ ellipse that is visually apparent
in this data is atypical node 17. Looking further at these ellipses,
you may notice that the ones with axes tilted at roughly %45o

have means that are considerably displaced along this direction,
and quite a few of them are much shorter than others. So, many of
these ellipses may be more dissimilar to their similarly oriented
neighbors than to ellipse 17. Nonetheless, the preferred value for
this real data is c¼2, since ellipse 17 is a known second order
anomaly in this WSN. Thus, we hope to deduce from visual
assessment that these data contain c¼2 clusters of ellipses.

What do the iVAT images tell us about E54? We see exactly the
structure we are hoping for in Fig. 10(c)—node 17 corresponds to
the single dark pixel in the bottom right corner of the focal
distance image, the remaining 53 ellipses being the 53"53 block.
Moreover, this image reveals a number of substructures within
the primary cluster of 53 ellipses, as is borne out by visual
examination of the data set. Neither the transformation energy
nor the compound normal images in views 10(b) and (d) present a
very clear picture of structure in E54. The overall results of
Examples 2, 3, and 4 suggest that focal similarity sfs provides the
‘‘best’’ iVAT images: they fully agree with the visually apparent
clusters in all three data sets. Now we turn to detecting the
clusters suggested by these images.

8. Finding clusters in sets of ellipsoids

Looking for clusters in E raises two questions. First, before
clustering, we must ask how many clusters to look for? Second,
after clustering, how much credence shall we put on the ‘‘optimal’’
partition of the data? The iVAT images of Section 7 offer visual
suggestions for value(s) of c in each of our three test sets prior to
clustering. There are many, many other ways to estimate c prior to
clustering. The second pre-clustering approach tested here is
based on the eigenvalues of D. Ferenc proved in [39] that a
nonsymmetric n"n matrix consisting of c (dark) blocks has c
large eigenvalues of order c while the other characteristic values

E40

E40: c = 2 or 3 clusters ? iVAT image I (D'*) :
Transformation Energy D = Dte

iVAT image I (D'*) :
Focal Distance D = Dfs

iVAT image I (D'*) :
Compound Normal D = Dcn
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Fig. 9. Data set E40 and iVAT images for the three similarity measures.
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remain of order
ffiffiffi
n
p

as n tends to infinity. Fallah et al. [40] recently
showed that Ferenc’s theorem could be used as a pre-clustering
assessment method to help when choosing the best SL clusters, by
looking for a ‘‘big jump’’ in a plot of the square roots of the ordered
eigenvalues (OEVs) of D. (Square roots just improve the visual
interpretation of where the big jump occurs.) Note that the theory
underlying this strategy is not tied to any clustering algorithm.
Fig. 11 shows plots of the first 15 OEVs of each D for each of our
three data sets.

According to the theory, we expect to find c big eigenvalues, a
knee at the big jump, and then a leveling off in the graph for the
smaller eigenvalues. The focal similarity graphs have pretty well
defined breaks that suggest c¼3 for all three data sets. It is much
harder to see the indicated choices from the graphs of the other
two measures, as they are much flatter. The most inconclusive

graph is the compound graph for E54, which does not really
suggest that there are c dominant eigenvalues.

Table 2 lists the pre-clustering best guesses for c for each of our
three test sets using the iVAT and OEV methods. Bold values are
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Fig. 10. IBRL data set E54 and iVAT images for the three similarity measures.

Table 2
Pre-clustering estimates of the best value for c.

Data c* Focal Energy Compound

iVAT OEV iVAT OEV iVAT OEV

E30 3 3 3 3 2 17 3
E40 2/3 2 3 2 4 2 6
E54 2 2 2 2 2 51 –
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incorrect estimates. The column headed ‘‘c*’’ shows the visually
apparent correct number of clusters in each data set. The two
methods agree with c* in 3/9 cases. iVAT indicates the correct c*

for all three data sets using either focal distance or the energy
similarity. The compound measure does not provide good
estimates of c* using either the visual (iVAT) or analytic (OEVs)
methods.

There are also many ways to look for the clusters in D
suggested by iVAT images. Here we discuss two related
approaches. One is the well-known single linkage (SL) algorithm
[16] and the other is the CLODD (clustering in ordered dissimilarity
data) algorithm [37]. CLODD processes dark block images made by
reordering D, while SL processes D directly. These two algorithms
are known to produce the same clusters from D under some – but

not all – circumstances. Interested readers may consult [38] for a
discussion of the theory underlying this relationship.

The classic method for choosing the ‘‘optimal’’ number of clusters
found by SL is to look for a ‘‘big jump’’ in the graph of SL merger
distances, and back up one step. The heuristic justifying this
procedure is that the biggest merger distance indicates the
maximum resistance for merger, so the clusters just ahead of this
merger are the most desirable. Fig. 12 shows the SL merger distance
graphs for c¼15 to c¼2 (merging, we plot higher c’s to the left).
Table 3 shows the values of c identified as optimal by this method,
headed as SLmd (single linkage merger distance). CLODD has an
internal measure of validity—viz., its objective function values. Each
validation method has successes and failures (as do all validation
indices). The failures are again shown as bold values. We see that the
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Fig. 12. Plots of SL merger distances for each D and each data set.

Table 3
Post-clustering estimates of the best value for c.

Data c* Focal Energy Compound

SLmd CLODD SLmd CLODD SLmd CLODD

E30 3 3 3 17 6 10 9
E40 2/3 3 2 21 10 15 11
E54 2 2 2 51 11 12 11

Fig. 13. CLODD objective function and partition extracted from the energy transform iVAT image of E30.
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preferred SL and CLODD partitions agree with c* in all three tries
only for the focal distance measure. Most importantly, the optimal
SL partitions of all three data sets agree with visual assessment of

the input data when focal similarity is used to build the input
dissimilarity data, and this method is the only one that recovers the
apparently correct answer for the WSN data E54.
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CLODD processes reordered images directly. CLODD is run on D
for c¼2, 3, y, cmax, and the optimal partition of c is taken as the
one that maximizes the CLODD objective function. Table 3 shows
the values that CLODD chooses as optimal based on its objective
function. CLODD recovers the desired clusters in 3/9 tries, so it
seems less effective than SL for this application. Bear in mind,
however, that CLODD extracts clusters from the iVAT image I(D0*)
by identifying the best fit of its objective function to the dark
block structure in the image. Thus, when an iVAT image seems to
have imbedded substructure in its primary dark blocks, CLODD
will extract a partition corresponding to this visual structure.
Fig. 13 is an example of CLODD applied to the iVAT image of E30
based on the energy transform similarity. The left view shows a
plot of the CLODD objective function, which maximizes at c¼6.
The right view is the optimal partition extracted by CLODD at this
value of c. The dotted red lines indicate the boundaries of the
partition. We point out that, unlike SL, which has no ‘‘tuning
parameters’’, CLODD has several user-defined parameters that can
be adjusted to alter model performance.

Finally, Fig. 14 displays the three data sets and the optimal
single linkage partitions of each. As you can see, there seems to be
perfect agreement between the clusters obtained by single
linkage and the visually apparent clusters in the data. The
corresponding partitions based on the energy transform were
the same as those for E30 and E40, but the optimal solution at
c¼2 for E54 identified the smallest of the 53 aligned ellipses in
the data as the singleton. Optimal SL partitions based on the
compound similarity matched the ones in Fig. 11 only on E30.
Fig. 14 also displays the single linkage partition at c¼2 for E40.
This is the primary partition that is suggested by the iVAT image
of E40 in view 9(c). This partition is also the one found at c¼2 by
applying single linkage to the other two matrices of dissimilarity,
so this interpretation of the data is compelling. The results shown
in Fig. 14 corroborate our earlier assertion that focal distance is
the most reliable of the three measures. Using the focal distance
dissimilarity matrix results in the correct partitioning of the input
data by single linkage clustering in all three tests.

9. Conclusions and discussion

First, we defined and analyzed three measures of similarity for
pairs of hyperellipsoids in p-space. Then we introduced a way to
visually assess cluster substructure in sets of ellipses using the
recursive iVAT algorithm to reorder dissimilarity data set D-D0*.
The reordered image I(D0*) shows clustering tendencies in the
objects underlying D as dark sub-blocks along the main diagonal.
We introduced a second pre-clustering assessment method based
on the ordered eigenvalues (OEVs) of D. Our examples confirmed
that the visual assessment of possible clusters in dissimilarity
data with iVAT is consistent with the theoretically sound OEV
analytic approach. Finally, we presented three numerical exam-
ples using data sets: E30—comprising 3 well separated subsets of
10 synthetic ellipses; E40—a set of 40 synthetic ellipses having 2

primary and 3 secondary clusters; and E54—a set of real WSN
data that had one second order node anomaly and 53 normally
operating sensor nodes. We found clusters in these three data sets
using the single linkage and CLODD clustering algorithms, and
assessed the clustering results with two methods: big jumps in
the SL merger distances and maxima of the CLODD objective
function. A number of things were discussed in this paper. It
might be helpful to refer to Table 4 for a graphic depiction of the
procedures used.

The three examples presented in this paper are pretty strong
evidence for the following assertions: (i) for these data sets, the
focal similarity is very effective, while the transformation energy
and compound normal measures are both unreliable; (ii) when
the ellipses are used to build a dissimilarity matrix D with the
focal distance, iVAT provides accurate visual estimates of c that
agree with the ordered eigenvalues of D for clusters of ellipsoids;
(iii) single linkage reliably extracts the clusters of ellipsoids
suggested by iVAT images. As is the case with all pattern
recognition models, there will be instances where these assertions
are false, but we think that our examples show that the suggested
model has enough merit to warrant further study.

What’s next? Perhaps the most important extension of this
initial study concerns the efficacy of our methodology for ‘‘real’’
hyperelllipsoids. Although the three measures developed in this
paper are well defined for any value of p, we have not tested this
scheme for elliptical data summaries when p42. But there are
already WSNs that collect p¼3, 4, and 5 measurements at each
station [10], and the number of measured features is certain to
grow as sensor technology improves the hardware available for
WSNs. Our intuition is that for p much larger than 3 or 4, these
measures will be inadequate unless n, the number of ellipsoids, is
many thousands. If this is the case, some way to usefully extend
these ideas to higher dimensions will be required.
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