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Abstract. Reducing the Web access latency perceived by a Web user
has become a problem of interest. Web prefetching and caching are two
effective techniques that can be used together to reduce the access latency
problem on the Internet. Because the success of Web prefetching mainly
relies on the prediction accuracy of prediction methods, in this paper
we employ a powerful sequential learning model, Conditional Random
Fields (CRFs), to improve the Web page prediction accuracy for Web
prefetching. We also propose a predictive caching scheme by incorpo-
rating CRF-based Web prefetching and caching together to reduce the
perceived waiting time of Web users further. We show in our experiments
that by using CRF-based Web predictive caching, we can achieve higher
cache hit ratio and thus reduce more access latency with less extra trans-
mission cost when compared with the predictive caching methods based
on the well known Markov Chain models.

Keywords: Web Page Prediction, Conditional Random Fields, Web
Predictive Caching.

1 Introduction

The World Wide Web is a vast information source in which many people turn
to for daily news and general knowledge. The easy and convenient access to in-
formation in remote locations has attracted more and more people to use the
Internet, which also results in a rapid increase in the Network traffic. The pop-
ularization and convenience of wireless connections has turned a large amount
of Web users to use handheld devices (such as mobile phones or PDAs) to surf
the Internet, although the transmission speed of these wireless connections are
usually slow. These low bandwidth Web users may spend lengthy times waiting
for requested Web pages to be transferred to them from Internet, which leads to
intolerable access delays.

The perceived access latency of Web users comes from several aspects. First,
Web servers need to process user requests. When a Web server is overloaded, the
latency caused by its processing time is noticeable. Second, Web clients need to
spend time on parsing the data received (i.e., interpreting a segment of script
or running a Java program) and displaying the contents to Web users. Third,
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the transmission of a file from a Web server to a user will consume a period
of time. Due to the rapid development of computer hardware, the processing
power of both Web servers and clients have improved dramatically, therefore,
the access latency caused by the processing time of Web servers and clients is
negligible. Because the network bandwidth (especially the wireless network) is
limited, the transmission of a large amount of data across a long distance over
narrow bandwidth will take a relatively long time, thus the transmission time
from Web servers to users results in most of the perceived latency of Web users.

Researchers have proposed many techniques to decrease the Internet access
latency, among which caching and prefetching are two main techniques. In Web
prefetching if most prefetched Web pages are not visited by a Web user in his
subsequent accesses (implying that the prefetching method has predicted the
user’s actions poorly), the limited network bandwidth and server resources will
not be used efficiently, increasing the access delay to the user-requested pages
and worsening the access latency problem. Consequently, the success of Web
prefetching relies mainly on the Web page prediction accuracy. In this paper, we
introduce the use of a powerful prediction algorithm, Conditional Random Fields
(CRFs) [1I, to improve the prediction accuracy of Web prefetching. Furthermore,
although a prefetched Web page is not the page a user wants to visit currently,
it might be requested by the user in his subsequent access, we can save these
prefetched pages in the user’s cache to reduce the waiting time further. In this
way caching and prefetching can be combined together as predictive caching to
improve the cache hit ratio and provide better performance in reducing Web
access latency. In this paper we propose the CRF-based predictive caching of
this kind for Web access latency reduction by combining CRF-based prefetching
and caching together. We show in our experiments the merits of CRF-based
Web predictive caching in reducing Web access latency over the one based on
the popular Markov Chain models [2].

The rest of this paper is organized as follows: In Section 2 we briefly de-
scribe the Web page prediction method based on Conditional Random Fields.
In Section 3 we illustrate how we combine CRF-based prefetching and caching
together as predictive caching for Web access latency reduction. In Section 4 we
compare the performance of CRF and Markov Chain-based predictive caching
in improving cache hit ratio and reducing transmission cost. In this section we
also show the impact of CRF-based predictive caching in reducing access latency
by simulations. Finally, we conclude this paper in Section 5.

2 Conditional Random Field-Based Web Page Prediction

The prediction algorithm employed to estimate the probability of each Web page
being requested by a Web user in the immediate future is very important for
Web prefetching. In this section we will first briefly review the basic principle of
Conditional Random Fields (CRFs) and then explain how to use the CRF-based
Web page prediction in Web prefetching.
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2.1 Conditional Random Fields

A Conditional Random Field [I] is an undirected graphical model, it defines
a conditional probability distribution of a label sequence Y = (y1,92, "+ ,Yn),
given an observation sequence X = (1,22, ,x,). Although theoretically the
structure of a Conditional Random Field can be an arbitrary undirected graph
that obeys the Markov property, for the tasks of labeling the most common
graphical structure is an undirected linear chain of first-order among label se-
quence Y. A linear chain CRF has the form as below:
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Where f; (yi—1,v¢, X, t) is a transition feature function between the states (la-
bels) at position ¢t — 1 and ¢, while s; (y¢, X, t) is a state feature function of the
state at position ¢. Z(X) is a global normalization factor over all possible label
sequences. The parameters 6 = (\;, it;) can be estimated by maximizing the log-
likelihood of the training data by using approach such as L-BFGS [0]. In terms
of the size of training data, the CRF training using L-BFGS usually requires
many iterations, each of which calculates the log-likelihood and its derivative
[3]. The larger number of sequences a dataset has, the more iterations it needs
for the L-BFGS algorithm to converge. The time complexity of such an iteration
is O(L?NT), where L is the number of labels, N is the number of sequences
(e.g., Web page sessions) and T is the average length of sequences. Therefore,
the time complexity of a CRF training is quadratic with respect to the number
of unique labels. When there are a large number of unique labels, the CRF train-
ing can become very slow or intractable even with efficient training algorithm
like L-BFGS. However, in the next section we will describe how to reduce the
training complexity of CRFs. After the parameters are trained, the Viterbi [4]
algorithm can be used to label the testing data and perform the prediction.

Because CRFs directly model the conditional distribution P(Y'|X), they do
not need to model the visible observation sequences X, which results in the re-
laxation of unwarranted independence assumptions over observation sequences.
Actually, CRFs can model long-range dependencies between observation ele-
ments. Moreover, due to the conditional nature, CRFs are able to model arbi-
trary features of observation sequences, regardless of the relationships between
them. Because of these advantages, CRFs can yield more accurate prediction
than other popular prediction methods such as Markov Chain models.

2.2 Grouped ECOC-CRFs for Web Page Prediction

In the Web page prefetching scenario, each unique Web page of a Website is
regarded as a unique label. Then we can treat each previous user session of the
Website as an observation sequence, and in a user session we can consider each



34 Y.Z. Guo, K. Ramamohanarao, and L.A.F. Park

pageview’s subsequent pageview as its label. In this way, we can make use of all
the previous uesr sessions to obtain observation sequences and the corresponding
label sequences which can be used to train a CRF model for making prediction
on this Website. It has been shown in [8] that CRFs can be used efficiently in
Web page prediction on Websites whose number of unique Web pages is small.
In a Website where there are a large number of unique Web pages, the direct
use of CRF-based prefetching is infeasible due to the inherent high complexity
of CRF training (quadratic to the number of unique labels). In this case, we can
reduce the overall training complexity of CRFs for Web prefetching by using
Error Correcting Output Coding (ECOC) [6] method to decompose a multi-label
CRF training into a set of binary-label sub-CRF trainings, and then combine
the output of all the sub-CRFs to obtain the possible original result [9]. Since
all the sub-CRF's are binary, they can be trained very fast and efficiently.
Moreover, although by using ECOC method we can achieve faster training
time for CRF-based Web prefetching, we also drastically reduced the class in-
formation given to each sub-CRF, which will decrease the overall prediction
accuracy slightly when compared to a multi-label CRF training. We can im-
prove the prediction accuracy of ECOC-CRFs by using the grouping technique
[10], in which the columns of the ECOC code matrix are divided into several
groups and each group is used to train a sub-CRF. By doing this, each sub-CRF
can obtain more refined class information and the prediction accuracy can be
enhanced further. In this way, we can utilize grouped ECOC-CRFs to obtain
satisfactory prediction accuracy for Web page prefetching on large-size websites.

3 CRF-Based Predictive Caching

Caching techniques save the copies of the Web pages that a user has visited in
his local cache, in the future if this user wants to visit these pages again his
browser can display these pages immediately from the cache. Every time when
a user requests a Web page, if this page is in his cache, then there is a cache
hit; otherwise there is a cache miss, and this page will be put into the user’s
cache. The cache hit ratio is then defined as cache hits / (cache hits + cache
misses). The more requested Web pages can be found in cache, the higher the
cache hit ratio is, and consequently more perceived access waiting time can be
saved. However, practically in a surfing process a Web user usually tends to jump
from the current Web page to a new Web page that was not accessed before,
seldom going back to the Web pages he has previously visited. In this case,
most cached Web pages will not be used again during this user’s surfing on the
Internet. Therefore, using caching solely might not easily achieve a satisfactory
performance in decreasing Web access latency.

Not like caching, prefetching techniques usually prefetch Web pages to a user
before this user makes request to them. With a high-accuracy prefetching, most
Web pages requesed by the Web user can be downloaded in advance. Further-
more, although some of these prefetched Web pages might be currently un-
wanted, they may be requested by the user in his subsequent access, and these
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Fig. 1. Data exchange between client side and server side in a practical predictive
caching system. ACK is the acknowledgement package.

prematurely prefetched Web pages can be stored in the user’s cache to enhance
the cache hit ratio. By doing so, caching and prefetching can be combined to-
gether as predictive caching to reduce more Web access latency, where cache is
more like a buffer for prefetched Web pages. In this paper, we incorporate CRF-
based prefetching and caching togegher in this way as CRF-based predictive
caching to reduce the access latency of Web users.

Moreover, because Web page prediction needs to utilize the historical access
information of previous users stored on Web servers, prefetching is usually made
by the server side. In order to predict a possible Web page correctly for a Web
user, the Web server needs to keep track of this user’s current access path.
However, in a predictive caching system, if the requested Web page can be found
in the client’s cache, the client will not make a request to the Web server for
this Web page, in which case the server can not be aware of the user’s current
behaviour and thus can not make a correct prediction for the user. Therefore,
in practice it is necessary for the client to send an acknowledgement package to
the server informing the server about the user’s access to a cached Web page.
This allows the server to maintain this user’s current access path exactly. Since
the acknowledgement package only contains the ID information of a Web page,
its size is very small and the caused network traffic of it can nearly be neglected.
An example process of this is illustrated in Figure[Il

4 Experimental Evaluations

In this section we conducted experiments to evaluate the effect of predictive
caching based on CRFs and Markov Chain models in reducing the Web access
latency. In our experiments we implemented the first, second and third order
Markov Chains (referred as 15-MC, 2"%-MC and 3"-MC respectively in the
future) for Web page prefetching. For the implementation of CRF training and
decoding, we use the CRF++ toolkit [I3]. We use three different feature tem-
plates of CRF++ to generate the feature functions that will be used in the
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CRF training in our experiments. In the first template (referred to as CRF1),
we define the current and previous one observation and their combination as
the unigram features; the second and the third template (CRF2 and CRF3) are
defined similarly.

Since the cache hit ratio will directly influence the perceived waiting time that
can be saved, we first examine how the predictive caching based on CRFs and
Markov Chains can improve the cache hit ratio on two datasets: the publicly
accessible msnbc dataset [I1] and the larger CSSE dataset [12].

4.1 Experiments on the msnbc Dataset

The first experiment about cache hit ratio is carried out on the msnbc dataset
[11], which is obtained from the Web logs of www.msnbc.com. In this dataset, all
the user visits are recorded in session format at the level of Web page categories
such as health, sports and so on. There are 17 different page categories of this
kind which can also be treated as 17 unique Web pages. After preprocessing
we randomly selected 35,000 distinct sessions with length more than 8 and less
than 100 from this dataset and divided them into two subsets: 30,000 sessions
for training and 5,000 for testing.

In this experiment the training dataset is used to train the CRF and Markov
Chain prediction models and the calculation of the average cache hit ratio is
based on the testing dataset. All the user sessions in the testing dataset are
assumed to be from different users, each of whom has an empty cache or buffer
of a fixed size n (for simplicity we assume all Web pages are of the same size 1).
Then for every pageview of each user session in the testing dataset a procedure
is conducted: First, if this pageview is found existing in its user’s cache, then
there is a cache hit; otherwise, a cache miss occurs and this pageview is put into
its user’s cache. Second, the prediction models obtained from the training stage
are employed to predict the most possible next Web page for this pageview and
prefetch this page to its user’s cache. Because prefetching only happens after a
Web user requests the first Web page, there is always a miss for the first Web
page of every user session. Every time when the user’s cache is full, the “LRU”
cache replacement strategy is adopted to remove the least recently used Web
page from the cache. This procedure continues from the first pageview to the
last pageview of a session, then the cache hit ratio for this session (or user) can
be calculated. In this way, we can obtain the cache hit ratio of all sessions (or
users) in the testing dataset and calculate the average value of them.

The average cache hit ratio of the predictive caching based on CRFs and Markov
Chains at different cache sizes on the msnbc dataset are shown in Figure] in which
the result of the pure caching method without prefetching (referred as LRU ) is also
shown as a baseline. From this figure we can see that while the cache size increases,
the cache hit ratios of all the methods with or without prefetching increase cor-
respondingly. The reason of this is straightforward: with a bigger cache size more
Web pages can be cached, thus more Web pages a user requests can be found in
the cache. When compare the cache hit ratios of these different methods at a same
cache size, we can find that all prefetching methods perform much better than



Web Access Latency Reduction Using CRF-Based Predictive Caching 37

0.7
0.65 —-LRU

£ - =15t MC
S -4 -2nd MC
z 0.6 -+ 3rd MC
==} —=—CRF1
=2 ——CRF2
g 0551 ——CRF3
Q

0.5

Cache Size

Fig. 2. Cache hit ratios at different cache sizes on the msnbc dataset

LRU (the method without prefetching), this is because at every visit the prefetch-
ing method will bring in the possible “next” pages that might be requested by the
user immediately, which in turn improve the cache hit ratio. Furthermore, it is no-
ticeable that CRF-based predictive caching can outperform Markov Chain-based
predictive caching significantly, this is because CRFs are more accurate models
than Markov Chains in predicting Web user behaviours.

4.2 Experiments on the CSSE Dataset

The same experiment is carried out on the CSSE dataset [I2] from the Web
log of the Department of Computers Science and Software Engineering (CSSE),
the University of Melbourne, which contains 3,829 unique Web pages. After
preprocessing, we randomly select 2,723 user sessions as the training dataset
and 544 user sessions as the testing dataset.

Because there are many labels (3,829 unique pages) in this dataset, the train-
ing of a multi-label CRF here is infeasible due to the high complexity of CRF
training. Therefore, we use grouped ECOC-CRFs for the CRF training in this
dataset. We made use of the Search Coding [7] method to design a 3,829 x 24
ECOC code matrix whose minimum Hamming distance d is 8, and then grouped
every 8 columns of this code matrix into one group, which means we have 3
groups and need to train 3 sub-CRFs.

In this experiment we also show the cache hit ratio of an Optimal scheme
as a comparison. The Optimal scheme uses an ideal prefetching method whose
prediction accuracy is 100% correct to every page except the first one of each
user session (we assume prefetching only happens after a Web user requests the
first Web page, and the first Web page of a user session is always unpredictable).
Moreover, the Optimal scheme uses an optimal cache replacement strategy to
replace Web pages. The optimal cache replacement is a theoretical page replace-
ment algorithm, which works as follows: when a page needs to be swapped in, the
cache system discards the page whose next use will occur farthest in the future.
For example, a page that is not going to be used for the next 10 visits will be
discarded over a page that will be used within the next 3 visits. Although the
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Fig. 3. Cache hit ratios at different cache sizes on the CSSE dataset

optimal cache replacement strategy is the best cache replacement strategy, it is
not realizable in practice since it is impossible to predict how far in the future a
page will be needed. However, because in our experiment from each user session
we can know exactly what page sequence the user will request subsequently at
each visit in advance, we can simulate the optimal replacement strategy. The
Optimal scheme can yield a higher cache hit ratio than any other methods. The
closer the cache hit ratio a predictive caching method with “LRU” cache re-
placement strategy can obtain to that of the Optimal scheme, the better the
method.

The cache hit ratios of different methods at different cache sizes on the CSSE
dataset can be found in Figure [Bl In this figure we can see that the Optimal
scheme has the highest cache hit ratio, while the other predictive caching meth-
ods with relatively higher prediction accuracy (such as CRF2 and CRF3) can
obtain a closer cache hit ratio to it, which indicates these methods can reduce
waiting time more for Web users. We can also notice that LRU (the method
without prefetching) yields the lowest cache hit ratio (lower than 20% when at
the cache size of 30), which shows the effect of prefetching in improving the
cache hit ratio. Moreover, from this figure we can see that the cache hit ratios of
all methods except Optimal increase while cache size enlarges, which again indi-
cates that increasing cache size can help to increase cache hit ratio. The reason
that the cache hit ratio of Optimal remains constant while cache size enlarges
is due to its 100% correct prediction accuracy: for a user every requested Web
page (except the first Web page) has already been prefetched into his cache, no
matter what the cache size is. Finally, it is obvious in this plot that the increase
rate of the cache hit ratio of the predictive caching methods with low prediction
accuracy (such as 1°-MC and 27%-MC) is higher than the predictive caching
methods with high prediction accuracy (such as CRF2 and CRF3). Therefore,
caching is more important when the predictive caching method’s prediction ac-
curacy is low.

In Figure[3 we showed the effect of predictive caching on increasing the cache
hit ratio of Web pages requested by Web users, in Figure @l we will examine the
impact of predictive caching on the hit ratio of predicted Web pages (referred as
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Fig. 4. Prediction hit ratios at different cache sizes on the CSSE dataset

prediction hit ratio, if the predicted Web page can be found in the cache, then there
is a hit). The higher the prediction hit ratio is, more predicted Web pages do not
need to be transmitted and thus can save more bandwidth. In Figured we can see
that while the cache size increases the prediction hit ratio of all predictive caching
methods increase significantly. It is noticeable that the general trend in this plot
shows that the prediction hit ratio of low-accuracy predictive caching methods
(such as 15t-MC) is higher than that of high-accuracy predictive caching methods
(such as CRF3). This is because generally a Web user will jump from a Web page
to a new page he does not visit before, and the low-accuracy predictive caching
methods have less chance to predict the user’s real intention correctly and tend to
predict more randomly than the high-accuracy predictive caching methods.

We also evaluated the transmission cost of each method in Figure @l Every
time when the Web server transmits a page (whether it is requested by the
user explicitly or prefetched by the prefetching system) to a user, a transmission
cost will occur. Transmission cost can be used to indicate the extra network
traffic incurred by prefetching. The lower a predictive caching method’s caused
transmission cost, the better this method. From Figure Bl we can see that the
transmission cost of all methods decrease as the cache size increases due to more
Web pages can be saved with a larger cache. The transmission cost of predictive
caching methods (except Optimal) are much higher than that of the method
without prefetching (LRU), the reason is that every time these predictive caching
methods need to prefetch extra pages into the cache, and if the exact page the
user accesses is not in the cache after prefetching, the user’s browser still needs to
connect to the Web server to download this page. Because of the 100% prediction
accuracy and the optimal cache replacement strategy, the transmission cost of
Optimal is lower than LRU. By comparing the predictive caching methods, we
can notice that the methods with higher prediction accuracy can produce lower
transmission cost, this is because higher prediction accuracy results in higher
cache hit ratio and thus more Web pages a user requests can be found in his
cache. Among all the predictive caching methods, CRF3 produces the closest
transmission cost to the Optimal scheme, denoting the merits of CRF-based
predictive caching.
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Fig. 5. Transmission cost at different cache sizes on the CSSE dataset

4.3 Simulations on Access Latency Reduced by CRF-Based
Predictive Caching

In order to evaluate how well CRF-based predictive caching can reduce a Web
user’s perceived access latency, we run two more simulations regarding the av-
erage waiting time Web users spent on each Web page on the CSSE dataset.
In these simulations, each Web page of all user sessions in the testing dataset
will be assigned a random transmission time (the time needed to transmit this
Web page from the Web server to the user) and a random reading time (the
time the user spent on reading this page). The calculation of the waiting time
on every Web page of a session can be described by an example as follows: If
a user session in the testing dataset is “A B”, which means the user’s exact
browsing path is from Web page A to page B, then the user’s waiting time on
page A is page A’s transmission time because page A is the first page the user
requests, his browser needs to download page A from the very beginning. Then
there are two cases that need to be considered: (1) Page B is prefetched correctly
as the next requested page by a prefetching method, and (2) the prefetching
method fails to predict the user’s behaviour correctly and prefetchs pages other
than B for the user. In the first case, if page B’s transmission time is less than
the reading time the user spent on page A, then there is zero waiting time
for page B since while the user is reading page A, page B has already been
prefetched to his computer; Otherwise, if page B’s transmission time is longer
than page A’s reading time, then the user’s perceived waiting time on page B
is calculated as page B’s transmission time minus page A’s reading time. In
the second case, because page B is not correctly prefetched while the user is
reading page A, his browser needs to download page B when he requests it, thus
the user’s perceived waiting time on page B is page B’s transmission time. The
calculation of the waiting time on each Web page of this example is shown in
Figure [0l In addition, the influence of transmitting a prefetched Web page on
the transmission time of the Web pages that a user explicitly requests is also
considered in these simulations. For example, if a requested Web page and a
prefetched Web page are transmitting simultaneously, the transmission time of
the requested Web page will double because the transmission of the prefetched
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Web page takes up half of the user’s bandwidth (assuming the user’s bandwidth
is constant). After the waiting time on every Web page is calculated, we sum
them and divide this value by the total number of Web pages in the testing
dataset to get the average waiting time on each Web page.

We generated a random transmission time that follows the Poisson distribu-
tion and a random reading time that obeys the Exponential distribution for each
Web page of every session in the testing dataset. In the first simulation, we set
the mean transmission time of all Web pages to 20 seconds and the mean read-
ing time of all Web pages to 60 seconds to represent the case where the mean
transmission time of Web pages is shorter than the mean reading time. In the
second simulation, we set the mean transmission time to 60 seconds and the
mean reading time to 20 seconds to represent the case where the mean transmis-
sion time of Web pages is longer than the mean reading time. Then we calculated
the average waiting time of different predictive caching methods based on CRF's
and Markov Chains in these two simulations, where the results of LRU and Op-
timal are depicted as well. We run each simulation 10 times and calculate the
average value as the final result. The results of these two simulations are shown
in Figure [[ and Figure [ respectively.

From the results of these two simulations we find that with a bigger cache
size, the average waiting time of all methods decrease drastically (especially
in Simulation 2), thus caching is very useful in reducing a Web user’s waiting
time. Of all the methods, the Optimal scheme yields the shortest average waiting
time. When compared at a certain cache size, the average waiting time of the
predictive caching methods with high prediction accuracy (such as CRF3) is
much shorter than the methods with low prediction accuracy (such as 15¢-MC),
and the higher prediction accuracy a predictive caching method has, the closer
the performance it can achieve to the Optimal scheme. Moreover, in Figure [§ we
also observe that when the cache size is smaller than 5, the average waiting time
of the predictive caching method based on the 1¢-order Markov Chain is longer
than the non-prefetching method LRU, this is due to the low prediction accuracy
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dataset

of the 1%*-order Markov Chain and in Simulation 2 the mean transmission time
of Web pages is much longer than the mean reading time. However, with a cache
size bigger than 5 the 1°-MC can perform better than LRU.

Finally, in Figure [0 we depict the results concerning the percentage of per-
ceived access latency reduction that can be achieved in these two simulations
and the corresponding extra transmission cost for each predictive caching method
when compared with LRU at the cache size of 30. From Figure [0 we can see
that the percentage of reduced waiting time is proportional to the prediction ac-
curacy of predictive caching methods, while the extra transmission cost presents
an opposite trend. Predictive caching methods with high accuracy prediction
can reduce substantial waiting time while only incur slight extra transmission
cost. For example, CRF3 has the highest prediction accuracy and thus has the
best performance here: by using CRF3 the percentage of perceived waiting time
reduction can achieve 63.0% and 18.9% in Simulation 1 and Simulation 2 respec-
tively, while the extra transmission cost is only about 7.3%, which is less than all
other Markov Chain-based predictive caching methods. Therefore, CRF-based
predictive caching can reduce Web access latency more efficiently than the one
based on Markov Chains.
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Fig. 9. Reduction of perceived waiting time VS. Extra transmission cost when com-
pared with LRU at the cache size of 30 on the CSSE dataset

5 Conclusion

Low-bandwidth Web users usually suffer a lot from waiting for the Web pages
they request being tranferred to them. In this paper, we propose the use of
Web predictive caching for Web access latency reduction by combining Web
prefetching and caching together. Since the performance of predictive caching
relies crucially on the Web page prediction algorithm used in prefetching, in this
paper we utilize a powerful prediction algorithm based on Conditional Random
Fields in prefetching to save more waiting time for Web users. We examine the
effect of predictive caching in improving the cache hit ratio and decreasing the
transmisstion cost, and show the advantages of CRF-based predictive caching
over the one based on Markov Chains in reducing a Web user’s access latency.
Our simulation results show that by using CRF-based Web predictive caching
(CRF3), the average access latency of Web users can be dramatically decreased
by up to 63% with a slight extra transmission cost of 7.3% when compared with
LRU.
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