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Abstract. Document clustering involves repetitive scanning of a doc-
ument set, therefore as the size of the set increases, the time required
for the clustering task increases and may even become impossible due to
computational constraints. Compressive sampling is a feature sampling
technique that allows us to perfectly reconstruct a vector from a small
number of samples, provided that the vector is sparse in some known do-
main. In this article, we apply the theory behind compressive sampling
to the document clustering problem using k-means clustering. We pro-
vide a method of computing high accuracy clusters in a fraction of the
time it would have taken by directly clustering the documents. This is
performed by using the Discrete Fourier Transform and the Discrete Co-
sine Transform. We provide empirical results showing that compressive
sampling provides a 14 times increase in speed with little reduction in
accuracy on 7,095 documents, and we also provide a very accurate clus-
tering of a 231,219 document set, providing 20 times increase in speed
when compared to performing k-means clustering on the document set.
This shows that compressive clustering is a very useful tool that can be
used to quickly compute approximate clusters.

1 Introduction

Clustering computational complexity is dependent on the number of objects in
the set and the number of features of each object. Therefore, as the number
of features grows, the feasibility of applying a clustering algorithm reduces. To
perform clustering, the data must be repeatedly scanned while the clusters are
refined therefore it is also important that we have enough memory for the com-
putation to avoid lengthy disk accesses.

As technology advances, the size of data to be processed also increases. Text
document databases are growing at a rapid rate, therefore, it is crucial that we
derive document clustering algorithms that are able to process and cluster these
large data sets.

Compressive sampling [4,5,3,7,1] is a new concept in Information theory that
states that we are able to perfectly reconstruct a vector from only a few samples,
when using an appropriate incoherent sampling scheme.
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In this article, we introduce compressive clustering; a method of clustering
using incoherent samples of the features, that provides a close approximation to
the clusters that would have been found on the unsampled data. We show that
we are able to apply compressive clustering to very high dimensional spaces and
obtain very accurate cluster estimates in a fraction of the time.

We make the following contributions:

– We provide a generalised algorithm for compressive clustering (Section 3),
– A radial k-means algorithm for complex vector spaces (Section 3.2), and
– Use of compressive clustering for document clustering using radial k-means

clustering with discrete Fourier and discrete Cosine sampling (Section 3.3).

The article will proceed as follows: Section 2 provides a brief introduction to
compressive sampling, section 3 introduces our compressive clustering algorithm
and how it can be applied to document clustering using radial k-means. Section 4
provides experimental results showing the performance of compressive clustering
for document clustering, and finally section 5 presents the use of compressive
clustering on a large document set.

2 Coherence and Random Projections

Compressive sampling is a new sampling technique that has gained popularity
in the image processing domain. It is an generalisation of the Nyquist sampling
theorem that is not restricted to band-limited signals. In this section we will
examine Nyquist’s theorem and Compressive sampling.

2.1 Sampling Cyclic Signals

The Nyquist-Shannon sampling theory is at the base of Information Theory. The
theory states that a signal containing no frequencies greater than b hertz, can
be perfectly reconstructed by sampling at a rate of at least 2b hertz.

Figure 1 shows a simple example of a 2 hertz signal in the form of a sinusoidal
wave. The Fourier transform of this signal would contain one non-zero frequency
component, therefore when sampling the signal, we must ensure that we capture
this single non-zero frequency value. If we can do this, and assume that the
remaining frequency values are zero, then we are able to perfectly reconstruct
the sinusoidal wave. The Nyquist-Shannon theorem tells us that we are able to
capture this nonzero frequency component by sampling at at least two times the
frequency, which in this case is a rate of 4 hertz.

2.2 Sampling Sparse Signals

The Nyquist-Shannon sampling theorem allows us to capture all frequency com-
ponents up to half of our sampling rate. This allows us to efficiently encode low
frequency signals, but what if there were only a few non-zero frequency compo-
nents that were scattered across the frequency domain. By using the Nyquist-
Shannon sampling theorem, we would have to sample at a high rate in order to
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Fig. 1. A 2 hertz signal, being sampled at a rate of four hertz. According to the Nyquist-
Shannon sampling theorem, we can perfectly reconstruct the signal using these four
samples.

capture only a few non-zero frequency components. Or what if the frequency do-
main of the signal was dense (many non-zero components), but there was some
other domain in which the signal has a sparse representation?

A recent advancement in Information Theory is that of Compressive Sampling
[4,5,3,7,1]. Compressive sampling theory states that given a signal that is shown
to be sparse in a known domain, we are able to take a small number of random
samples of the signal and successfully reconstruct the signal to its original state.
Stated more formally, we have:

x = min ‖z‖1, s.t. ξ = ΦΨz (1)

where y = Ψx is the original signal and x is sparse, Φ is the sampling function, ξ
is the set of samples, and ‖ · ‖1 is the l1 norm. To obtain perfect reconstruction,
we must ensure that x is S-sparse (implying that x has at most S non-zero
values), and that the transforms Φ and Ψ are incoherent.

Before we proceed lets examine the case where the Fourier transform of a
signal is sparse, but the non-zero components are spread evenly across the whole
spectrum. We have said that the Nyquist-Shannon sampling theorem would re-
quire us to sample at a high rate, due to some of the frequency components being
of high frequency. By using Compressive Sampling, we know that the Fourier
Transform of the signal is sparse, therefore we let Ψ be the Fourier transform
and x be the transformed signal. We can construct a sampling function Φ by
randomly sampling rows of the identity matrix. This implies that if we take K
random samples of our signal Φx, we are able perfectly reconstruct it given that
K is large enough.

It has been shown that when using the Fourier transform as Ψ and a sampled
identity matrix as Φ, we obtain the relationship for perfect reconstruction:

K ≥ CS log N
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where K is the number of samples, N is the length of the original signal and C
is a constant.

Therefore, given that S = 10, N = 1000, then the number of samples K
required for perfect reconstruction is proportional to 70. Note that if not enough
samples are taken, the resulting reconstructed sparse vector will be similar to a
thresholded version of x due to the use of the l1 norm in the minimisation.

For the example above, we chose a transform and sampling matrix that were
maximally incoherent. Coherence is a measure of basis similarity that computes
the smallest angle between the basis vectors from the two basis sets. The coher-
ence of Φ and Ψ is given as:

µ(Φ, Ψ) =
√

N max
1≤i,j≤N

|〈φi,ψj〉|

where φi and ψj are basis vectors in the transformation Φ and Ψ , and µ(Φ, Ψ) ∈
[1,
√

N ]. Therefore given the Fourier transform and identity matrix as Ψ and Φ,
we obtain µ(Φ, Ψ) = 1, being maximally incoherent. For other choices of Ψ and
Φ, where the coherence is greater than one, we have the generalised relationship:

K ≥ Cµ2(Φ, Ψ)S log N

Therefore, we can see that the choice of the transformation and sampling ma-
trices are crucial in reducing the number of samples required for perfect recon-
struction. The more incoherent the two basis sets are, the more they spread over
each other. For example, the Fourier and identity basis are maximally incoherent
since each Fourier coefficient is a combination of all identity basis vectors.

3 Compressive Clustering

Now that we have an understanding of compressive sampling, we will introduce
the use of compressive sampling for clustering.

We have stated that clustering algorithms require repetitive access to the data
while clustering, therefore as the size of the data grows, so to does the time and
storage required to compute the clusters. This implies that there is a limit as to
the size of data we can cluster, that is dependent on the current computation
and storage available.

Compressive sampling has provided us with the concept of incoherent sam-
pling. By using incoherent samples, we are able to capture enough information
to perfectly reconstruct the vector from the samples, given knowledge of the
sampling scheme. We can apply this theory to obtain a low dimensional feature
space in which we can perform clustering. Using the small dimensional represen-
tation of the clusters, we are able to reconstruct the vectors in the original high
dimensional space.

Our compressive clustering algorithm is as follows: Given a data set {y1, . . . ,
yM}, a transform Ψ , such that yi = Ψxi where each xi are sparse, and a sampling
function Φ that is incoherent to Ψ :



Fast Approximate Text Document Clustering Using Compressive Sampling 569

1. Sample the features of the vector space using the sampling function to obtain
ξi , where ξi = Φyi.

2. Cluster the sampled space {ξ1 . . . ξM}.
3. For each vector ξi in cluster Cm, reconstruct the original vector xi using

equation 1.
4. Compute each cluster definition in the unsampled space based on the cluster

vectors {x1, . . . , xM}.
5. Re-assign each unsampled vector based on the unsampled cluster definitions.

The cluster definition is what defines the cluster (e.g. a hyperplane, a point in
the space, a direction in the space). We also make use of the cluster definition
when assigning new vectors to a cluster. Note that step 2 can be performed
using compressive sampling reconstruction, or by accessing the original data if
possible.

Using this algorithm, we are able to perform the clustering in the reduced
space, requiring less computation and less memory. The algorithm requires:

– one pass over the data to sample each vector which is passed to the clustering
method.

– a second pass over the data to compute each cluster definition.
– a third pass over the data to assign each vector to a cluster based on the

cluster definitions.

Therefore, rather than requiring many scans of high dimensional data set, we
are able to cluster the data in a reduced space requiring only three scans of the
high dimensional data.

3.1 Document Clustering

The common representation of documents as vectors uses a vector space where
each dimension represents a unique term in the document collection. For ex-
ample, a document existing in a document collection containing 200,000 unique
terms, is represented using a 200,000 dimensional vector. We can see that when
using this vector space, the dimension of the vector space is related to the num-
ber of documents in the collection, and can only grow as new documents are
added.

Using this vector representation also leads to very sparse document vectors
(containing many zero elements). If a document contains 100 unique terms, then
its associated document vector in the 200,000 dimensional space would contain
199,900 zero elements. It is this feature that leads to high compression ratios
when constructing a document index for information retrieval.

It is common for less that 1% of document vector elements to contain nonzero
values. Therefore it is safe to assume that document vectors are a sparse repre-
sentation of the documents.

Document vector elements contain the frequency (or weighted frequency) of
the associated term in the associated document. Based on this, it does not make
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sense to use Euclidean k-means to cluster the document set, as Euclidean dis-
tance is a geometric distance between two points. The value of zero in a vector
is simply a position of a point to the Euclidean distance metric. In our case, zero
is not a position, but an absence of a term. Therefore, we provide a modification
of the k-means algorithm using the angle between two vectors as a measure of
similarity.

3.2 Complex Radial K-means

In this section, we present a form of k-means that uses the angle between vectors
as a measure of similarity, and is able to cluster vectors existing in a complex
vector space.

K-means is an iterative process that records a cluster centre vector cm for
each cluster and adjusts it until stability is reached.

The first part of any k-means process is the initialisation of the centre vectors.
In this article, we take the approach of Hartigan and Wong [8], and adapt it for
use with the vector angle similarity metric. Given the mean vector x̄ =

∑
i xi

and the angle between each vector and the mean vector θi = x̄∠xi, the cluster
centres are initialised using:

cm = xround(1+(m−1)N/C)

where the vectors xi are sorted by θi (the angle θ1 associated to x1 is the smallest
and the angle θN associated to the vector xN is the largest angle), and round(x)
rounds fractional values to their nearest integer.

Using this initialisation, we can compute the radial k-means clusters using the
iterative process:

cm ←
∑

i∈Cm

xi for m ∈ {1, . . . , C}

Cm ← {xi|m = argmin
m

(cm∠xi)} for m ∈ {1, . . . , C}

where Cm is the set of vectors associated to cluster m.
We define the angle between any two complex vectors xi and xj as:

cos (xi∠xj) =
Re(〈xi, xj〉)
‖xi‖2‖xj‖2

where ‖xi‖2 =
(∑

j |xi,j |2
)1/2

and Re(a + ib) = a for real values a and b.

3.3 Approximate k-means Document Clustering

By using radial k-means as our clustering algorithm, in conjunction with our
compressive clustering algorithm, we obtain a compressive clustering algorithm
suitable for documents:
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1. Sample the features of the vector space using the sampling function Φ.
2. Perform k-means on the sampled space.
3. For each vector ξi in cluster Cm, reconstruct the original vector xi.
4. Compute the cluster centre cm =

∑
i∈Cm

xi.
5. Compute the unsampled space clusters using the unsampled space cluster

centres.

To complete the compressive clustering algorithm we must choose an appro-
priate transform and sampling matrices. The transform matrix Ψ provides the
relationship between the sparse domain and the data domain. We have stated in
section 3.1 that the document vectors are sparse, therefore a suitable transform
matrix is the identity matrix (Ψ = I).

The sampling matrix must be incoherent to the transform matrix, therefore
the perfect choice is a random sample of the discrete Fourier basis:

ξj,k =
N∑

n=1

yj,ne−i2π(k−1)(n−1)/N

where yj,n is the nth element of vector yj , and ξj,k is the kth Discrete Fourier
Transform (DFT) sample of vector yj . Noting that the discrete Fourier basis is
complex, we will also examine the discrete Cosine basis:

ξj,k =
N∑

n=1

yj,n cos (π(k − 1)(2n− 1)/2N)

where in this case ξj,k is the kth Discrete Cosine Transform (DCT) sample of
the vector yj .

Given a transformation matrix Φ and vectors yi and yj , we can compute the
transformed vectors: ξi = Φyi and ξj = Φyj . If we define ξi∠ξj as the angle
between vectors ξi and ξj , then:

cos (ξi∠ξj) =
〈ξi, ξj〉
‖ξi‖2‖ξj‖2

=
〈Φyi, Φyj〉
‖Φyi‖2‖Φyj‖2

=
yT

i ΦT Φyj
√

yT
i ΦT Φyi

√
yT

j ΦT Φyj

From this expansion, we can clearly see that if Φ is a unitary transformation,
then cos (ξi∠ξj) = cos (yi∠yj).

The Discrete Fourier transform and Discrete cosine transform are unitary
transformations, implying that vector norms are preserved when the transfor-
mation is performed. By sampling the rows of the transformation, we obtain
a matrix that is no longer unitary, but has been shown to be approximately
orthogonal [5]:

(1 − δ)‖y‖22 ≤ ‖Φy‖22 ≤ (1 + δ)‖y‖22
for small values of δ.
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Therefore, if Φ is approximately orthogonal, we can show that cos (ξi∠ξj) ≈
cos (yi∠yj). It is due to this property that our clustering in the reduced space
provides a good approximation to the clustering that would be obtained in the
unsampled high dimensional space.

This compressive clustering algorithm using complex k-means clustering can
be considered a type of sketching algorithm as investigated in [9], where, in our
case, we are producing compact vectors that attempt to preserve the original
angle between each vector.

4 Performance

We have seen that the iterative process of k-means constantly requires access
to the vector data. Therefore, an efficient process would store the vector set in
memory to avoid disk accesses. Given this constraint, the size of the data set
that we can process depends on the size of the accessible memory.

In this section, we will examine the performance of radial k-means on a small
document set from the SMART collection1. The document set contains the doc-
ument set CRAN, CACM, CISI and MED containing 1398, 3204, 1460, and 1033
documents respectively, totalling 7, 095 documents with 14, 523 unique terms.

To reduce the size of the vector space, we ignored all terms that appeared in
only one document. By ignoring these terms, we will not affect the results since
they do not affect to the similarity between any two documents. This reduced
the number of terms from 14, 523 to 7, 866.

4.1 Cluster Accuracy

We computed the accuracy of each cluster using the Jaccard coefficient:

J(Cm, Cn) =
|Cm ∩ Cn|
|Cm ∪ Cn|

where Cm and Cn are the sets of vectors associated to clusters m and n respec-
tively, and | · | is the cardinality operator.

For each experiment performed, we obtained a data set with a recommended
clustering. To compute the accuracy, we compared the computed clustering to
the recommended clustering and chose the permutation of clusters that optimised
the following function:

ρ = argmax
p

(
C∑

i=1

J(Cpi , Ci)

)

where Ci is the recommended cluster set i, Cpi is the computed cluster set pi, pi

is the ith value in permutation p, and ρ is the best matching cluster permutation
when compared to the recommended cluster set.
1 ftp://ftp.cs.cornell.edu/pub/smart

ftp://ftp.cs.cornell.edu/pub/smart
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4.2 Radial K-means without Sampling

As a baseline measure, we will apply the k-means algorithm to the document
vector space without sampling. Doing so produced the results shown in table 1.

Table 1. Cluster accuracy of radial k-means on the whole feature space (no sampling
performed). The small size of the document collection allows us to load its contents
into memory and perform k-means. We can see that it produces high accuracy, and
takes nearly seven minutes to complete.

Accuracy
Time (sec)

CRAN CACM CISI MED

0.9709 0.9408 0.8798 0.9778 409.82

We can see from the results that radial k-means has successfully partitioned
the document collection into the individual document sets, with only the CISI
document set accuracy being below 0.9. We can also see that the algorithm took
409.82 seconds to complete (nearly 7 minutes).

4.3 Radial K-means with DFT Sampling

We will now apply the compressive clustering algorithm from section 3.3 to our
document collection and compare its accuracy to the clustering found without
sampling.

Our first set of results used a sample of the DFT basis as the sampling matrix
Φ. We computed results using sample sizes of 16, 32, 64, 128, 256, 512 and 1024.
Since the samples are randomly selected we ran 10 trials using each sample size
and have reported the mean accuracy in Table 2 and the standard deviation of
the accuracy in Table 3.

We can see from the mean accuracy results that there is a clear increase in
accuracy as the number of random DFT features used increases, and that the
increase saturates at 256 features. We can see that the accuracy for samples of
256 or more are very close to the unsampled clusters obtained in Table 1, being
only 0.1 or 0.2 in difference.

Table 2 also contains timing information, showing the mean time taken to
run the compressive clustering algorithm. We can see that the times are much
shorter than the 409.82 seconds taken without sampling, with 256 DFT features
being 14 times faster.

The table of standard deviations (Table 3) provide us with an understanding
of the effect of the random sampling. It is interesting to see that the standard
deviation is much greater for sampled DFT features of 128 and less when com-
pared to those of 256 and greater. This implies that a low standard deviation in
a set of clustering results gives an indication that we have taken enough sam-
ples to provide a close approximation to the unsampled clusters. Therefore the
cluster standard deviation could easily be used as a measure of the compressive
cluster accuracy.
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Table 2. Cluster accuracy when using compressive clustering with the Discrete Fourier
Transform (DFT). The number of randomly sampled DFT features are provided in the
first column, with the accuracy of each cluster (measured using the Jaccard coefficient)
in the following four columns, followed by the computation time in seconds.

DFT Feat
Mean Accuracy

Time (sec)
CRAN CACM CICI MED

1024 0.9599 0.9196 0.8528 0.9620 74.11
512 0.9258 0.9403 0.8531 0.8944 36.30
256 0.9688 0.9328 0.8607 0.9638 28.49
128 0.8882 0.7117 0.6093 0.5981 24.66
64 0.8219 0.8498 0.7652 0.7184 25.70
32 0.6430 0.7304 0.5976 0.4092 34.93
16 0.7091 0.5815 0.4403 0.3331 24.95

Table 3. Cluster accuracy standard deviation when using compressive clustering with
the Discrete Fourier Transform (DFT). The number of randomly sampled DFT features
are provided in the first column, with the standard deviation of the accuracy of each
cluster (measured using the Jaccard coefficient) in the following four columns.

DFT Feat
Accuracy Standard Deviation

CRAN CACM CICI MED

1024 0.0367 0.0670 0.0822 0.0408
512 0.1229 0.0037 0.0660 0.2071
256 0.0028 0.0148 0.0248 0.0132
128 0.1345 0.2112 0.2425 0.3925
64 0.1573 0.1079 0.0912 0.2704
32 0.1844 0.1683 0.1337 0.2357
16 0.1492 0.1412 0.1018 0.1982

4.4 Radial K-means with DCT Sampling

The use of the DFT feature samples requires us to work with complex num-
bers, meaning that the chosen clustering algorithm also has to cluster complex
numbers. Since many clustering clustering algorithms are designed for real num-
bers only, we will examine a method of sampling real values. Therefore we will
examine the effect of DCT feature samples on the accuracy of our compressive
clustering algorithm.

Our next set of results used a sample of the DCT basis as the sampling matrix
Φ. We computed results using sample sizes of 16, 32, 64, 128, 256, 512 and 1024.
Since the samples are randomly selected, we ran 10 trials using each sample size
and have reported the mean accuracy in Table 4 and the standard deviation of
the accuracy in Table 5.
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Table 4. Cluster accuracy when using compressive clustering with the Discrete Cosine
Transform (DCT). The number of randomly sampled DCT features are provided in the
first column, with the accuracy of each cluster (measured using the Jaccard coefficient)
in the following four columns, followed by the computation time in seconds. The su-
perscript dagger (†) denotes a significant difference when compared to the same result
using the DFT. The subscript star (∗) denotes a significant difference when compared
to the associated result when using the DFT with half the number of features.

DCT Feat
Mean Accuracy

Time (sec)
CRAN CACM CICI MED

1024 0.9494 0.8895 0.8022 0.9280 65.10∗

512 0.9139†
∗ 0.9207 0.8450 0.8977 48.93∗

256 0.8752† 0.8989∗ 0.7804† 0.8006† 31.54∗

128 0.7423† 0.7662 0.5652 0.4937 35.33†
∗

64 0.7163 0.7442 0.5867† 0.5109 29.78
32 0.5669 0.5437† 0.4197† 0.3207 27.14
16 0.4694† 0.5413 0.4074 0.3019 25.95

From first glance, the accuracy values in Table 4 are lower than those of the
DFT in Table 2, but we must remember that shown accuracies are mean values of
the ten sample runs for each feature set size. The random sampling of features
implies that the results from each experiment will lead to different clustering
accuracies. Therefore we employ the use of statistical significance testing to
assist us in understanding if there actually is a difference in the clustering, or if
the difference is purely by chance.

In each of our experiments, we compute the clustering accuracy obtained
using ten different sets of randomly sampled features. Therefore, we have ten
different clustering accuracy measurements for each experiment. The statistic
that we want to test is if the true mean accuracy of the clustering using the
DCT features is different to the true mean accuracy of the clustering using the
DFT features.

Since we have only ten samples (ten clustering results) for each method, we
cannot have confidence in the t-test, therefore we will employ the use of Wilcoxon
rank sum test.

Table 4 contains the results from the significance tests in the form of a super-
script dagger (†). A dagger on the accuracy denotes that there is a significant
difference at the 0.05 level. We can see that there are four cases that the CRAN
cluster is significantly different, three cases where the CISI cluster is significantly
different and one case where CACM and MED clusters were significantly differ-
ent. From examination, we can see that the DCT sampling is worse in all of
these cases.

If we consider that the DFT features are complex (containing real and imag-
inary portions) and that the DCT features are only real, it would be a fairer
comparison if we compared the DCT feature results to those of the DFT with
half the number of features. For example, if 256 DCT features were selected from
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a vector, they would occupy the same memory as 128 DFT features, since each
DFT feature contains two values (a real and imaginary value).

Table 4 contains the results from the significance tests comparing each DCT
feature sample accuracy to each DFT feature sample of half size, in the form of
a subscript star (∗). A star on the accuracy denotes that there is a significant
difference at the 0.05 level. We can see that there are now only two cases in
total where there is a significant difference, implying that DCT features produce
similar results to DFT features when half of the DFT feature samples are used.

Table 4 also contains timing information, showing the mean time taken to
run the compressive clustering algorithm. We can see that similar to the DFT
sampling, the times are much shorter than the 409.82 seconds taken without
sampling, with 512 DCT features being 8 times faster.

Significance tests were also performed on the times to find if the time taken
to perform compressive clustering using DCT features was significantly different
to the times taken to perform compressive clustering using DFT features. The
times with a superscript dagger show a significant difference at the 0.05 level
when comparing experiments with the same number of features, while times
with subscript star show a significant difference in times at the 0.05 level when
comparing experiments using DCT features with those using half the number of
DFT features. We can see that there is only one case where a significant difference
in time is shown when comparing DCT and DFT with the same number of feature
samples. This implies that the use of complex numbers has not increased the time
of the clustering. If we examine the subscript stars, we can see that there are
four times when there is a significant difference between the time for DCT based
compressive clustering and DFT based compressive clustering, where the DCT
based method produces longer times.

Table 5. Cluster accuracy standard deviation when using compressive clustering with
the Discrete Cosine Transform (DCT). The number of randomly sampled DCT features
are provided in the first column, with the standard deviation of the accuracy of each
cluster (measured using the Jaccard coefficient) in the following four columns.

DCT Feat
Accuracy Standard Deviation

CRAN CACM CICI MED

1024 0.0454 0.1102 0.1640 0.0961
512 0.0699 0.0500 0.0669 0.0972
256 0.1586 0.0952 0.1198 0.2903
128 0.1986 0.1730 0.2540 0.3653
64 0.1975 0.1190 0.2045 0.3012
32 0.1508 0.1626 0.1518 0.2227
16 0.0930 0.1615 0.2737 0.1638
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The table of standard deviations (Table 5) provide us with an understanding of
the effect of the random sampling. We can see that the table is similar to Table 3
except that the drop in standard deviation does not occur until 512 DCT features
are sampled. This re-enforces our belief that the standard deviation can be used
to measure the accuracy of our approximation to the unsampled clustering.

5 Clustering Large Scale Document Sets

Our final set of experiments examine the use of compressive clustering on a much
larger document set. Just as in the previous section, we have again taken a set of
document collections and combined them. The document collections are a set of
newspaper articles from the Associated Press (AP), articles from the Financial
Review (FR), articles from the Wall Street Journal (WSJ) and articles from Ziff
Publishing (ZIFF). These document collections are available on disk two of the
TIPSTER collection2 and were used at TREC-1 to 5. Individually, they contain
79,919, 19,860, 74,520, and 56,920 documents respectively, totalling to 231,219
documents. This document collection contains 208,932 terms. Again, we removed
all terms that appeared in only one document, which reduced the term count to
108,734 terms.

Table 6. Cluster accuracy for radial k-means on the whole feature space (no sampling
performed) for the large document set (231,219 documents). These results are used as
a baseline for the compressive clustering results in Table 7.

Accuracy
Time (sec)

AP FR WSJ ZIFF

0.6780 0.9962 0.5969 0.8603 181734

We have computed the radial k-means clusters for the large document set
(without sampling) as a baseline for the compressive clustering results. The
clustering results are shown in Table 6. We can see that the radial k-means
process clustered most of the FR and ZIFF documents into correct clusters, but
there was confusion amongst the AP and WSJ documents. We can also see that
the process took over 50 hours to complete.

To continue the experiment, we ran our compressive clustering algorithm with
both the DFT sampling and DCT sampling, and the compressive clustering
algorithm. The number of sampled features was chosen as the largest that we
could store in memory. For the DFT sampling this was 128 features, while for
the DCT features this was 256 features (due to the DFT features being complex
and DCT features being real). The recommended clustering for this document
2 http://trec.nist.gov/data/docs_eng.html

http://trec.nist.gov/data/docs_eng.html
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Table 7. A comparison of compressive sampling using DFT sampling and DCT sam-
pling. The first two columns provide the sampling transform and the number of features
sampled, the following four columns provide the cluster accuracy in terms of the Jac-
card coefficient, and the last three columns provide the computation time of the stages
involved. Note that the DFT sampling uses half the number of samples since each
sample is complex, containing a real and imaginary component.

Transform Features
Accuracy Computation Time (sec)

AP FR WSJ ZIFF Pass 1 k-means Pass 2 Pass 3

DFT 128 0.6704 0.9959 0.5821 0.8617 3626 458 2398 2334
DCT 256 0.6839 0.9964 0.6134 0.8627 3785 1130 2412 2342

collection is each cluster containing only documents from one document set (e.g.
cluster 1 contains only documents from the AP document set). The accuracy
and timing results are provided in Table 7.

We can see in Table 7 that we obtained high accuracy clusters of the Financial
Review and Ziff Publishing articles, implying that the clusters found by k-means
was very similar to those in the corresponding collections. The reduction in ac-
curacy for the Associated Press and Wall Street Journal collections shows that
there was confusion for a set of the articles as to which cluster they belonged to.
The Associated Press and Wall Street Journal collections both contain newspa-
per articles, therefore there also may be similarity in the content that they each
publish. From the results it is obvious that the k-means algorithm has computed
similarity between articles from each of the AP and WSJ sources and hence
caused a reduction in accuracy.

When comparing the accuracy of DFT and DCT features, Table 7 shows that
there is little difference, with the DCT sampled compressive clustering providing
slightly greater accuracy, but there is no evidence that one method is better than
the other.

The computation time section of Table 7 provides us with a break down of
the computation time of each stage in the algorithm. Pass 1 involves scanning
through the data set and performing either DFT or DCT feature sampling. The
only difference between the two is the time of performing the transform sampling.
We can see that the times are similar for both DFT and DCT sampling, implying
that the transform sampling times are also the same. The k-means time shows
the number of seconds spent computing the radial k-means clusters. It clear that
the DFT feature sampled data was much faster to process for k-means than the
DCT based data. This is interesting, since as we have said, the DFT features
are complex, making the number of integers processed the same as processed in
the DCT based features. But the time taken to perform k-means is on the DFT
features is less than half of the time to perform k-means on the DCT feature
samples.

Pass 2 and 3 involve computing the cluster centres in the unsampled space
and recomputing the document assignments to each cluster. We can see that
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these are both similar and that they are independent of the feature sampling
method used.

If we compare the compressive clustering results in Table 7 to the clustering
results in Table 6, we find that the accuracy results are very similar. This implies
that the compressive clustering algorithm is providing an excellent estimate of
the clusters. If we compare the times, we find that the compressive clustering
algorithm took approximately 2.5 hours to compute the clusters (for the DFT
and DCT methods), while clustering the original data took over 50 hours. This
demonstrates the benefit of compressive clustering.

From this we can see that compressive clustering is an exciting new method
of computing clusters in high dimensional data. In this article we have explored
its application to document clustering, but we can see that with correctly chosen
transform and sampling matrices, we can apply compressive clustering to any
large scale clustering problem to produce clusters that would have otherwise
been not computable.

6 Related Work

The work we have presented is related to Locality-Sensitive Hashing (LSH) [6],
and Random projection [2], where in our case the hashing/projection is defined
by sampling from the most incoherent linear transformation to the sparse feature
space, which in the case of text document vectors, is the Fourier transform or
Cosine transform.

Note that when using compressive sampling for dimension reduction and clus-
tering, we are able to reconstruct any vector in the reduced space to its sparse
equivalent in the original feature space under certain conditions. This is not
possible when performing LSH or Random projection.

7 Conclusion

Clustering large scale data sets requires intense computation and large storage
space (such as memory and disk space). The clustering process itself requires
continuous access to the data and therefore we benefit from storing the data in
memory to avoid lengthy disk accesses.

Compressive sampling is a new concept of Information theory that allows us
to sample a small number features from a data set such that we are able to
perfectly reconstruct the data, with knowledge of the sampling scheme.

In this article, we presented compressive clustering, an algorithm which utilises
the sampling of compressive sampling to obtain a reduced feature space. Using
this reduced space, we are able to obtain a close approximation to the clustering
that would be obtained on the unsampled data. Using the algorithm presented
in this article, compressive clustering can be applied to any domain to obtain
approximate clusters in high dimensional data, given appropriate sampling and
transform matrices.
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We applied compressive clustering using radial k-means to two document col-
lections. We showed that compressive clustering using discrete Fourier and dis-
crete Cosine sampling provided a close approximation to the clusters computed
on the unsampled data in 1/14th of the time on the first document set. On the
second larger document set containing 231,219 documents, we showed that com-
pressive clustering can provide a very accurate clustering in 1/20th of the time.
This shows that compressive clustering is a very useful tool that can be used to
quickly compute approximate clusters.
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