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Abstract— We model anomalies in wireless sensor networks with 
ellipsoids that represent node measurements. Elliptical anomalies
(EAs) are level sets of ellipsoids, and classify them as type 1, type 
2  and higher order anomalies. Three measures of (dis)similarity 
between pairs of ellipsoids convert model ellipsoids into 
dissimilarity data.  Clusters in the dissimilarity data may 
correspond to normal and anomalous measurements and nodes 
in the network. Assessment of (clustering) tendency is facilitated 
by visual inspection of (VAT/iVAT) images. Two examples 
illustrate the potential for anomaly detection. 
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I. INTRODUCTION1

The application that motivates the present work is the use 
of ellipsoids for distributed anomaly detection in wireless 
sensor networks (WSNs) [1-2]. The authors of [2] model the 
data collected at individual sensor nodes by sample-based 
ellipsoids; and [3] presents a method for clustering sets of 
ellipsoids in this context. The authors of [4] further this effort 
by defining three measures of similarity for pairs of ellipsoids, 
and then use them for visual assessment of clustering tendency 
(VAT, [5]). Algorithm iVAT [6] augments VAT by applying a 
path-based distance transform to the input dissimilarity data 
before VAT images are made. This note combines the models 
in [2, 4, 6] with the objective of improving this scheme for 
anomaly detection in WSNs. 

Figure 1 depicts a typical hierarchical WSN with subtree 
heads and a gateway node. Examples of WSNs include: the 
Great Duck Island project in Maine for monitoring sea birds; 
the Great Barrier Reef (GBR) project to monitor ocean 
parameters at reef sites in Australia; and the Intel Berkeley 
Research Laboratory (IBRL) deployment  [2]. 
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Figure 1. Typical architecture of a hierarchical WSN 

II. ANOMALIES IN SENSOR NETWORKS

The literature contains many definitions of anomalies in 
data measurement, and there are many algorithms available for 
their detection [7]. Many of these algorithms are designed for 
large data sets and assume substantial processing capabilities, 
so these techniques are often inappropriate for anomaly 
detection in resource limited sensor networks. Consequently, 
there has been substantial interest and activity about research 
concerning techniques that can be used in WSNs: see 
Bettencourt, Hagberg and Larkey [8] for an introduction to 
some of this literature. 

Each sensor in a WSN collects data measurements at 
specified time intervals over the life of the network. Various 
events will alter data collected at individual sensors or subtrees 
in a WSN. For example, the local temperature at a node or in a 
subnetwork might be much higher than in other parts of the 
network due to a fire, sunshine, or proximity to a fixed heat 
source. This may occur at just a few isolated times, or over an 
epoch within the collection window, or for the duration of data 
collection.  During operation, anomalies at an individual node 
can occur occasionally (intermittent fault), or over the whole 
time epoch (e.g., power failure).  

We classify anomalies according to the characteristics of 
individual data measurements made by each sensor at each 
node. Fig. 2 depicts the four types of anomalies recognized by 
our model. The upper view in Fig. 2 shows several data points 
(the squares) that differ a lot from the rest of the data at the 
same  (shaded gray) node. This is a type 1(or first order) data 
anomaly, internal to this node. The second sketch in Fig. 2 
illustrates an internal  type 1 (or first order) epoch anomaly.
Here a subset of data measurements (the squares) over some 
contiguous time epoch in the measurement window differs 
enough from the general trend at the node to warrant being 
regarded as abnormal. This could, for example, be the result of 
a temporary change in sensor environment. The third view in 
Fig. 2 illlustrates a type 2 (or second order) external anomaly.
Here,  all of the data (the squares in the data space of the gray 
node) differ from those being observed at neighbor nodes, so 
this is an anomalous node. The bottom view in Fig. 2 shows a 
subnetwork of three gray nodes that are all producing data 
different from their neighbor nodes. This is a higher order 
(HO) external anomaly. All four types of anomalies are well 
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known in real WSN deployments. See [3] for some examples 
based on the IBRL data. Our model is set up to detect type 1 
anomalies in the data space. type 2 and HO anomalies are 
detected in a new feature space of ellipsoids. 

Figure 2. Types of Anomalies in Sensor Networks 

III. ELLIPTICAL ANOMALIES

In order to detect these different types of anomalies, a 
model is required that represents the structure of normal (i.e., 
non-anomalous) data in the network. Our model depends on the 
geometry of ellipsoids. Let vectors x, m! "p, and A !#p"p

be positive definite. The quadratic form Q(x) = xTAx  is 
positive definite. For fixed m, 
let E(A, m; t) = {x !# p | x ! m

A

2
= t2} . This set is the 

(surface of the) hyper-ellipsoid in p-space induced by A, all of 
whose points are the constant A-distance (t) from its center m.
We normalize each member of the family {E(A, m; t) :  t > 0}

as x ! m
A / t2
2

= 1 . Scaling a spheroid is done by matrix 
multiplication with a scaling matrix S = diag(sk ) , where sk is 
the scaling factor for dimension t, 1 ! k ! p. Rotation through 
an angle ! is accomplished by matrix multiplication with a 

unitary rotation matrix R =
cos! "sin!
sin! cos!
# 
$ % 

& 
' ( 
 (in !2). Any point 

z in the unit sphere can be mapped to an ellipsoid via scaling, 
rotation and shift, z! x = RSz+m.

Let X = {xk}!"p  be a collection of measurement vectors 
that record sensor measurements at a node, e.g., temperature, 
humidity, etc. Let (m, S) denote the sample mean and 
covariance matrix of X. Normal and anomalous points in the 
data set X are now defined, relative to the hyperellipsoidal 
parameters (m, S-1) as 

 NPX,t " NPX (S"1, m; t) = {xk # X | xk "m
S-1

2
! t2}  (1) 

  APX,t " APX (S"1, m; t) = {xk # X | xk " m
S-1

2
> t2}  (2)

   

These definitions use level sets of the sample-based 
Mahalonobis distance to create crisp 2-partitions of X. 
Reminder: please don't confuse our use of the word "normal" 
here with its meaning in probability and statistics. Here, normal 
is synonomous with "not anomalous". In particular, we do not
make any assumptions about the distribution of the data set X; 
(m, S) is just a compact, useful way to represent the collected 
data. 

Setting thresholds on the Mahalonobis distances in equation 
(1), and hence (2), can be done in various ways.  Three 
definitions of elliptical anomalies (EAs) are used in [2] as the 
basis for identification of type 1, type 2 or HO anomalies. For 
example,  the  Elliptical Cardinality Anomalies (ECAs) of X 
are defined as follows. Let c ! {0, 0.01, 0.02, .., 1}. Compute 

the n distances {dk} = xk " m
S"1

2! 
" 
# 

$ 
% 
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 and sort them in 

ascending order, d(1) ! d(2) ... ! d( cn! ")! ... ! d(n). The sets 

NPX,( cn! ") and APX,( cn! ")  are the 100c% ECA partition of X. 
The hyperellipsoid that contains 100c% of the samples in X has 
an effective radius t = d( cn! ") . For example, if X has n = 250 

samples, then NPX,( 0.9n! ") , NPX,( 0.95n! ") , and NPX,( 0.99n! ")
contain, respectively, 225, 237 and 247 of the 250 samples in 
X. That is, these three sets contain the closest (in Mahalonobis 
distance) 90%, 95% and 99% of the points to the sample mean. 
Conversely, they identify, respectively, the 25, 13 and 3 points 
furthest from the sample mean as companion anomaly sets.We 
will call the family NPX,( cn! ") #APX,( cn! ") : c = 0.01,…,1{ } the 

Type 1: internal epoch anomaly

Type 1: internal data anomaly

Type HO: external subtree anomaly

Type 2: external node anomaly 



elliptical cardinality anomalies of X. The sets NPX,t and APX,t
are used to detect elliptical anomalies as depicted graphically in 
the upper two views of Fig. 3. 

Figure 3. Anomaly detection in data and ellipsoid spaces 

The lower three views in Fig. 3 show a representation of the 
WSN data by their elliptical parameters. The ellipses become 

the data that are used for anomaly detection. For internal node 
assessment, windowed subsets of data vectors are converted to 
sample-based ellipsoids. For whole node (type 2) and substree 
(type HO) anomaly detection, all the data collected at each 
node over a specified time interval are represented by one 
sample-based ellipsoid. Our visual anomaly detection approach 
requires a way to assess elliptical similarity, the topic we turn 
to next. 

IV. SIMILARITY MEASURES FOR ELLIPSOIDS

Suppose we have two ellipsoids in p-space, Ei and Ej, that 
have effective radii ti and tj, centers [means] mi and mj and 
[covariance] matrices Ai and Aj. First, normalize Ei and Ej,
Ai ti

2! Ai  and A j t j
2! A j. Then s(Ei, Ej) is a similarity 

measure for Ei and Ej. if, and only if, three conditions are 
satisfied: (s1) s(Ei, E j) = 1! Ei = E j ; (s2) 
s(Ei, E j) = s(E j, Ei) " i ! j ; and (s3) s(Ei, E j) > 0 ! i, j . We 
summarize three measures of similarity between ellipsoid pairs 
that are presented and analyzed in [4]. 

Compound Similarity Let " = {"1 ! "2 !…! "p}  and  
" = {"1 ! "2 !…! "p}  be the ordered eigenvalues of Ai and Aj

for ellipsoids Ei = (Ai, mi ,1)  and E j = (A j, m j,1)  , 
and !" = (1/ !1 ,…,1 / !p )

T  and !" = (1/ !1 ,…,1 / !p )
T .

The vector of angles between paired eigenvectors of Ai and Aj

is ! = arccos(diag(Ri
TR j)) . The normalized compound 

similarity between ( Ei, Ej) is 

 

scn (Ei, E j)

= e
' mi ' m j (Ai +A j )'1

2
+ sin" + #$ ' %$

& 

' 

) 
) 

( 

* 

+ 
+ 

" (3) 

where mi ' m j (Ai +A j )'1

2
= (mi ' m j )

T(Ai + A j)
'1(mi ' m j ) .

Transformation Energy Similarity. A point in the space 
of ellipsoid Ei can be mapped to a common co-ordinate space 
by scaling the point by Si

'1 , reversing the rotation by Ri
'1 , then 

shifting the point away from the origin by translation by mi.
Within this common space the point can then be mapped into 
the space of Ej by shifting the point by mj, rotating by Rj and 
scaling by Sj. The mapping is summarized as 

  

x j = f (x i | Ei, E j) = SjR j(Ri
'1Si

'1x i ' mi + m j)

= SjR jRi
'1Si

'1

M ij

1 2 4 3 4 
x i + SjR j(m j ' mi )

d ij

1 2 4 4 3 4 4 
= Mijx i + dij

,

where Ei = E(RiSi
'2
Ri
T
,mi;1) , E j = E(R jSj

'2
R j
T
,m j;1) . Now 

define f (Ei , E j) 2
= max f (z | Ei, E j) :  z ! "p; z

2
= 1{ }  . 

The transformation energy similarity function is 

Type 1 data EA detection in data space 

Type 1 epoch EA detection in data space 

Type 1 epoch EA detection in ellipsoid space 

Type 2 EA detection in ellipsoid space 

HO EA detection in ellipsoid space 
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Bhattacharya coefficient similarity. The Bhattacharya 
similarity coefficient between two ellipsoids is 

 
sbc (Ei, E j) = e

'
1
8

m i 'm j (Ai +A j ) / 2[ ]'1
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2
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The authors of [4] present several numerical examples that 
compare and contrast these three measures of ellipsoidal 
similarity on various sets of ellipsoids. The problem that these 
measures is designed to solve is the detection of anomalies as 
shown in the lower three views of Fig. 3. To assess what 
anomalies may exist in sets of ellipsoids, we turn to a method 
based on visual examination of dissimilarity data. 

V. VISUAL ASSESSMENT OF CLUSTERING TENDENCY

Many visual methods for clustering tendency begin with the 
reordered dissimilarity image (RDI). The intensity of each 
pixel in an RDI corresponds to the dissimilarity between the 
addressed row and column objects. An RDI is "useful" if it 
highlights potential clusters as a set of "dark blocks" along its 
diagonal. Each dark block represents a group of objects that are 
fairly similar. The method used here is called VAT [5], which 
creates and displays a grayscale image whose ij-th element is a 
scaled dissimilarity value between objects oi and oj.  Each 
element on the diagonal of the VAT image is zero. The off 
diagonal values range from 0 to 1.  If an object is a member of 
a cluster, then it also should be part of a submatrix of similar 
values, whose diagonal is superimposed on the diagonal of the 
image matrix.  

The uppermost view in Fig. 4 is a scatterplot of n=1000 
data points in two dimensions drawn from a mixture of five 
normal distributions. These object data were converted to 
D1000!1000 = D = [d ij] = x i " x j[ ]  using the Euclidean norm. 
The c = 5 visually apparent clusters in the upper view of Fig. 3 
are suggested by the 5 distinct dark diagonal blocks in the 
lower view, I(D*), which is the VAT RDI of the data after 
reordering. Compare this to the image seen in the center view, 
which is the image I(D) of the dissimilarities in random order. 
It is clear from this example that reordering is necessary to 
reveal the structure of the underlying data.  

However, there are many data sets whose clusters are not 
well defined, or are confusingly arranged. This type of 
substructure is not readily captured by VAT reordering and its 
subsequent image may not be so useful. This is not surprising, 
because VAT reordering is explicitly tied to the type of data 
favored by single linkage clustering [9].  In an effort to 
overcome this limitation, the authors of [6] introduced a 

transformation of the input dissimilarity matrix that is applied 
to D before submitting it to the VAT algorithm. 

5 Gaussian clusters in two dimensions

Unordered image I(D) of D

VAT ordered image I(D*)

Figure 4. Unordered and VAT images of the five Gausaian clusters 

The iVAT transformation replaces each dissimilarity dij in 
D by the minimax path distance between nodes i and j (objects 
i and j in the input data). Let Pij be the set of all possible paths 
from oi to oj. The path based distance between oi and oj is seen 
in the transform 

 # D = [ # dij = min
p"Pij

{{ max
1!h<|p|
{ {dp[h]p[h +1]}};1! 1, j ! n}] (6) 

where p[h] denotes the object at the h-th position in path p, and 
|p| is the length of this path.  

The upper view of Fig. 5 shows a scatterplot of data that 
contains c = 5 visually apparent clusters. The object data were 
converted to D using the Euclidean norm. The middle view in 
Fig. 5 is the VAT image, I(D*) of the input matrix D. The VAT 
image does not possess nice clean visual structure like that in 



the bottom view in Fig. 4, even though both sets of object data 
have five pretty compact and well separated clusters. The 
problem in the data set of Fig. 5 is the large irregularly shaped 
cluster in the center of the data, which occupies the upper left 
portion of the VAT image. You might talk yourself into seeing 
5 dark blocks along the diagonal of this image, but it's arguable 
whether there is any clearly evident structure in I(D*). The 
pixels corresponding to the stripe cluster are jumbled in 
appearance. 
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5 irregular clusters in two dimensions

VAT image I(D*)

iVAT image I(D'*)

Figure 5. VAT and iVAT images of the data set in the upper view 

The bottom view in Fig. 5 is the iVAT image I(D'*) of this 
data set, made by first transforming D#D' with the path based 

distance transform in (6), and then applying VAT to D'. No 
prompting is needed for you to see the improvement made in 
the image. The iVAT image clearly shows the underlying 
structure of the input data. Examples such as this encouraged 
us to add the iVAT transform to the elliptical similarity 
algorithms reported in [3]. Are the VAT and iVAT orderings of 
an input data set are always the same? The answer is yes. We 
have a proof of this that will appear in a forthcoming paper. Is  
an iVAT image is always at least as "good" as the VAT image 
of the same D. We think this is true, but this is a subjective 
judgment, not a provable assertion.  

We next give a concise statement of VAT/iVAT.  In 
general, the functions arg max and arg min in Steps 1 and 2 are 
set valued, and when the sets contain more than one pair of 
optimal arguments, any optimal pair can be selected. The 
VAT/iVAT reordering is stored in the array P = (P(1), ..., 
P(N)). Applying VAT to D results in the image I(D*); applying 
iVAT to D results in the image I(D'*).  

VAT/iVAT: Visual Assessment of Tendency [5, 6] 

Input:  Dissimilarities Dn"n  for O = {o1,…,on};  

  (Convert similarity data Sn!n as D = [1]-S) 

Step 1. K = {1,…,n}; select (i,j) $ arg max
p!K,q!K

{Dpq} ;

 Set P(1) = i; I = {i}; and J =  K – {i}. 

Step 2. For t = 2,…, n: select (i,j) $ arg min
p!I,q!J

{Dpq} ;

 P(t) = j;  I ! I %{j} and  J ! J – {j}.  

Step 3. Form the ordered dissimilarity matrices  

 [VAT]: D*:  d ij
* = dP(i) P( j) , for 1 ! i, j ! n. 

 [iVAT]: ! D * = [0]n"n ; for r = 2; … ; n do

j = arg min
k=1,…, r"1
1 2 3 

{Drk
* }

! Drc
* = Drc

* ,c = j

" Drc
* = max{Drj

* , " Djc
* },  c = 1,…, r #1,  c ! j

   For 2 ! <j ! n; i < j: ! Dji
* = ! Dij

*

Step 4. Display I(D*) and I(D'*), scaled so that 

  

max
1! i, j!n
{ {dij

*}, max
1! i, j!n
{ { ! dij

*}= white and 0 = black. 

 Constructing the iVAT matrix D' matrix with (6) can be 
computationally expensive (O(n3)). The recursive computation 
of D'* given here does not alter the VAT order of D*, has the 
same ordering as D*, and is O(n2). [10, 11].  



VI. VISUAL ASSESSMENT OF ELLIPTICAL ANOMALIES

Now we are ready to assemble our approach to detecting 
possible (elliptical) anomalies using data collected by wireless 
sensor network nodes. Let E denote a set of n ellipsoids in p-
space. For  each (Ei, E j) " E " E, we compute sij = s(Ei, E j)
with any of the three measures of similarity described in 
Section IV, and array these n2 values as the n"n similarity 
relation matrix S = [si j]. The transformation D = [d i j] = [1" sij]
yields a dissimilarity relation on E " E . Consequently, 
applying the VAT or iVAT algorithms to D will yield RDIs 
that can be used to assess clustering tendencies of the ellipsoids 
in E " E .

First we can apply this strategy at a single node. Thus, if Ej
is the set of n ellipsoids collected at node j in the WSN, we can 
examine the VAT/iVAT images of Ej to assess the possibility 
that there are type 1 epoch anomalies at node j (some ellipsoids 
at this node differ significantly from the rest, as shown in the 
middle view of Fig. 3).  

At the next level, we can aggregate (single) ellipsoids from 
different nodes in the WSN, and look for type 2 anomalies in E 
(almost all of the ellipsoids are different from those at neighbor 
nodes). And finally, we can represent each node in the entire 
WSN by an ellipsoid, and search for subsets of ellipsoids that 
seem abnormal (or at least different). Such a subset 
corresponds to a subtree of nodes that are behaving differently 
than their neighbors - that is, a higher order EA.  

Example 1. Our first example is shown in Fig. 6. The upper 
view in this Fig. shows the (simulated) input data to be a set of 
27 ellipsoids in two dimensions. There are 11 ellipses in the 
lower left primary cluster, and 16 ellipses in the upper right 
primary cluster. Each primary cluster has one aberrant ellipse, 
so each primary cluster has two subclusters. These 27 ellipses 
can represent several different scenarios. For example, they 
might be sets of ellipses built from data collected at just 2 
nodes taken over consecutive time intervals, with one set of 
intervals longer than the other. In this case, each of the nodes 
has a single type 1 epoch anomaly, the case represented by the 
middle graphic in Fig. 3.  

 A second possibility is that these 27 ellipsoids are single 
representatives of data collected over some fixed time interval 
at 27 nodes in a WSN. In this case the two main subsets would 
correspond to subtrees whose sensors were collecting data that 
differed from each other, and the single (rotated) ellipse 
centered (more or less) at the locations of the two clusters 
would then be a type 2 EA within the overall higher order 
anomaly structure seen in the data. You might argue that there 
are only two kinds of ellipses in this data, since the single type 
2 anomalies in each subset appear quite similar to all but the 
single ellipse in the other subset. But they are similar only in 
orientation and shape; their centers are far apart. We hope that 
this feature will be seen by our measures of elliptical similarity. 
And it is.  

Space constraints limit our presentation in Fig. 6 to the 
VAT and iVAT images of this data set for just the normalized 
compound similarity measure scn shown in equation (3). The 

center view is the VAT image I(D*), the lower view is the 
iVAT image I(D'*).  

27 ellipses from (artificial) WSN nodes
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Figure 6. Data and VAT/iVAT images for type 2 and HO elliptical 
anomalies using the normalized compound similarity measure (3). 

What can you see? First, both images indicate that there are 
4 clusters in this data. Each primary cluster block weakly 
contains the secondary structure of the type 2 anomalies - one 
rotated ellipse in each cluster. These are seen as single pixels 
adjacent but somewhat related to the larger dark blocks that 



correspond to the major group for each node. And third, the 
iVAT image in the lower view is a little better than the VAT 
image above it in that some of the ambiguity within the two 
major blocks is resolved in the iVAT view. We don't see the 
dramatic improvement provided to VAT by iVAT illustrated in 
Fig. 5, but we do see slight improvement.Example 2. Our 
second example concerns the set of 40 ellipses shown in Fig. 7. 
The lower left portion of the data comprises 25 ellipses that are 
centered at roughly the same coordinates. Ten of the twenty 
five ellipses in this cluster have been rotated about 90 degrees. 
The upper right part of this plot contains 15 ellipses that are 
quite similar to each other. Most observers will agree that there 
are three clusters (of ellipses) in this data set. In terms of 
elliptical anomalies there are again several possibilities, 
depending on how the data arose. For concreteness, assume 
that each ellipse represents the data collected by one node in a 
WSN over some fixed interval of time. In this case the data 
correspond to a network with two higher order anomalies - i.e., 
a network with three subtrees of nodes that are behaving 
differently from each other but which have good similarity 
within their subtree.  

Figures 8 and 9 show the VAT and iVAT images of the 
dissimilarity matrix of this data built by each of our three 
measures of elliptical similarity. If you accept our hypothesis 
that there are three primary clusters in this data, this structure is 
evident  in the left views of these two figures - that is, the 
images built with the normalized compound similarity measure  
at equation (3). The VAT and iVAT images for this measure 
both have three overriding dark blocks along their diagonals. 
And each of the three blocks appears in these views to have 
internal substructure.  

Images for the Bhattacharya similarity in equation (4) - the 
center views in Figs. 8 and 9 - also have three primary dark 
blocks. Moreover, the secondary structure in these two views 
shows the two clusters of 10 and 25 ellipses in the lower left 
part of Fig. 7 quite nicely. The iVAT view in the center of Fig. 
9 shows the three sets of ellipses perfectly: three black blocks 
of just the correct sizes.  The image shows that the set of 25 in 
the upper portion of the image are two subsets of sizes 10 and 
15 that are much more closely related to each other than to the 
other 15 ellipses.  This is because these two sets are centered at 
roughly the same coordinates. We think this view of the data 
captures and represents its cluster structure completely and 
correctly. 

The images corresponding to the transformation energy in 
equation (5) are less informative than those from the other two 
similarity measures. We are not sure if this will always be the 
case, since these are just the first few tests of these measures on 
data sets of this type. 

Finally, we may again note that the iVAT images do seem 
to offer  slight to moderate improvements over their VAT 
predecessors. However, there is noticeable improvement, 
encouraging us to believe that the path based distance used by 
iVAT is a useful change to the standard VAT implementation. 

40 ellipses from (artificial) WSN nodes

Figure 7. Simulated data for two HO elliptical anomalies 

VII. CONCLUSIONS AND DISCUSSION

The sensors in almost all WSNs are small and cheap. The 
price we pay for this convenience is that they have very limited 
computational capability, and communication of data to other 
nodes in the network is  difficult and impractical. This suggests 
the use of distributed models to minimize power consumption 
and communication overhead. Networks of this type suffer 
from various failures and environmental changes that 
contaminate the data they gather. Moreover, it is entirely 
possible that networks are maliciously attacked. Thus, anomaly 
detection is both necessary and desirable.  

We defined four types of anomalies in WSNs. The simplest 
are type 1 data and epoch anomalies that occur at a single node. 
A type 2 anomaly is  an entire node that seems abnormal within 
the context of other nodes in the network. And finally, higher 
order anomalies are subtrees within a network whose behavior 
is different from other parts of the same network.  

Our model for anomaly detection resides in the geometry of 
ellipsoidal representation. Ellipsoids are an efficient, flexible 
way to compactly represent data collected by individual 
sensors. For example, a sensor that measures five variables and 
is sampled every 30 seconds for a day yields 60,120 real 
numbers, whereas the sample based ellipsoid built from this 
data comprises 20 real numbers. The advantage of the 
ellipsoidal representation for distribution and analysis of 
overall network performance is significant.  

We introduced three measures of similarity for sets of 
ellipses. Visual VAT and iVAT displays of the similarity data 
are used to assess potential cluster structure in the data they 
processed. This, in turn, suggests how to detect various types of 
anomalies when the ellipses come to us in the context of 
elliptical representation of data from wireless sensor networks. 
The next two steps in the progression of this research are: (i) to 
find the clusters that are suggested by VAT/iVAT images (don't 
forget, these images simply suggest clusters, they do not 
partition the objects represented by the ellipsoids); and (ii) to 



apply the system described in this note to real data from a 
deployed wireless sensor network such as the IBRL data. 
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Figure 8. VAT images for the data in Figure 7 

10 20 30 40

5

10

15

20

25

30

35

40

iVAT image I(D'*) for scn

10 20 30 40

5

10

15

20

25

30

35

40

iVAT image I(D'*) for sbc

10 20 30 40

5

10

15

20

25

30

35

40

iVAT image I(D'*) for sbc

Figure 9. iVAT images for the data in Figure 7 


