Latent Semantic Analysis for large document sets.

Laurence A. F. Park Kotagiri Ramamohanarao

ARC Centre for Perceptive and Intelligent Machines in Complex Environments
Department of Computer Science and Software Engineering
The University of Melbourne
Overview

Latent semantic analysis (LSA) is a simple concept with firm mathematical foundations, but it has many problems.
We propose a query expansion which utilises LSA and overcomes most of the problems.
Outline

1 Latent Semantic Analysis
 - Topic Space
 - Building the topic space
 - LSA Example
 - Past Results

2 Query Mapping
 - LSA Problems
 - Query expansion
 - Overcoming the LSA problems
Outline

1. Latent Semantic Analysis
 - Topic Space
 - Building the topic space
 - LSA Example
 - Past Results

2. Query Mapping
 - LSA Problems
 - Query expansion
 - Overcoming the LSA problems
Document index containing document vectors:

<table>
<thead>
<tr>
<th></th>
<th>term 1</th>
<th>term 2</th>
<th>term 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>document 1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>document 2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>document 3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Query vector:

<table>
<thead>
<tr>
<th></th>
<th>term 1</th>
<th>term 2</th>
<th>term 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>query</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Document and query vectors

Term space

term 1

term 2

term 3

query

document 1

document 2

document 3
The term space

- The vector space and probabilistic model treats terms as independent entities.
- To find documents on a specific topic, we must provide the correct key terms.
VSM Document creation process

1. Author has an idea.
2. Idea is put to paper in the form of words.

This implies that if any word was changed, the document would not convey the same idea.
LSA Document creation process

1. Author has an idea.
2. Idea to divided into topics.
3. Topic is put to paper in the form of words taken from the topic pool.

If words are changed, the document conveys the same idea as long as the new word was taken from the same topic pool.
Creation of space

1. A topic is a set of similar words
2. Topics can be found by clustering
3. LSA uses reduction of dimension to cluster the words into terms
1. **Latent Semantic Analysis**
 - Topic Space
 - Building the topic space
 - LSA Example
 - Past Results

2. **Query Mapping**
 - LSA Problems
 - Query expansion
 - Overcoming the LSA problems
LSA concepts

- The dimensions of greatest variance hold the most information.
- The dimensions of small variance are considered noise.
LSA concepts

- The dimensions of greatest variance hold the most information.
- The dimensions of small variance are considered noise.
LSA concepts

- The dimensions of greatest variance hold the most information.
- The dimensions of small variance are considered noise.
LSA concepts

- The dimensions of greatest variance hold the most information.
- The dimensions of small variance are considered noise.
LSA process

LSA index building:

1. Construct a space based on the largest s orthogonal norms of the document index.
2. Find the best approximation of every document vector in the new topic space.

LSA query:

1. Calculate the best approximation of the query vector in the topic space.
2. Calculate the query-document similarity score by using the inner product of the vectors in the topic space.
LSA process

LSA index building:

1. Construct a space based on the largest s orthogonal norms of the document index.
2. Find the best approximation of every document vector in the new topic space.

LSA query:

1. Calculate the best approximation of the query vector in the topic space.
2. Calculate the query-document similarity score by using the inner product of the vectors in the topic space.
LSA concepts

Document vectors in term space.

term-topic space mapping

Document vectors in topic space.

query vector in term space

term-topic space mapping

query vector in topic space
Dimension of greatest variance

Document matrix norm

\[\sigma = \|A\|_2 \equiv \max_x \|Ax\|_2 \quad \|x\|_2 = 1 \]

(1)

\[v = \arg\max_x \|Ax\|_2 \]

(2)
Calculating the dimension

The vector v provides the most information about the document set of any unit vector existing in the document space.

Calculating v

\[
\sigma = \max_v \|Av'\|_2
\]

(3)

\[
\|Av'\|_2^2 = \sigma^2 = (Av')' (Av')
\]

(4)

\[
= v A' A v'
\]

(5)

\[
v v' = 1
\]

(6)

\[
v v' \sigma^2 = v A' A v'
\]

(7)

\[
v' \sigma^2 = A' A v'
\]

(8)

Therefore σ^2 and v are an eigenvalue and eigenvector of $A'A$.
Singular Values

The eigenvectors and eigenvalues of $A' A$ are the singular vectors and singular values of A.

Calculating v

\[
\begin{align*}
A &= U' \Sigma V \\
A' A &= V' \Sigma U U' \Sigma V \\
&= V' \Sigma^2 V \\
A' A V' &= V' \Sigma^2
\end{align*}
\]

or:

\[A' A v' = v' \sigma^2\]

Therefore the norm of a matrix is equal to its largest singular value.
Singular Value Decomposition Properties

\[A = U' \Sigma V \] (13)

- \(U \) and \(V \) contain the left and right orthonormal singular vectors.
- \(U' U = V' V = I \)
- \(\Sigma = \text{diag} (\sigma_1, \sigma_2, \ldots, \sigma_r, 0, 0, \ldots, 0) \)
Second largest dimension

To find the second largest dimension:

- remove the largest dimension
- find the largest dimension in the new space

To remove the largest dimension:

- project the document vectors onto this dimension
- subtract it from the original document set

\[A_1 = A - Av'v \] \hspace{1cm} (14)
After removing the dimension corresponding to the matrix norm, the next largest norm becomes the largest remaining dimension norm.

This is the next largest singular value.
Choosing singular values

To choose the r dimensions that best approximate the original matrix, we select the top r singular vector and corresponding singular values.
Outline

1. Latent Semantic Analysis
 - Topic Space
 - Building the topic space
 - LSA Example
 - Past Results

2. Query Mapping
 - LSA Problems
 - Query expansion
 - Overcoming the LSA problems
LSA Example

Example
Simple document set
- The stone is large enough
- Large stones are fast
- Fast stones are not smooth enough

\[d = \begin{bmatrix} \text{stone} & \text{large enough} & \text{fast} & \text{smooth} \end{bmatrix} \]

\[A = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 \end{bmatrix} \]

<table>
<thead>
<tr>
<th>(\sigma_i)</th>
<th>(v_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.715</td>
<td>-0.6357</td>
</tr>
<tr>
<td>1.276</td>
<td>0.1118</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0.6621</td>
</tr>
<tr>
<td>0</td>
<td>0.3807</td>
</tr>
</tbody>
</table>
LSA Example

Example

Simple document set
- The stone is large enough
- Large stones are fast
- Fast stones are not smooth enough

\[\mathbf{d} = \begin{bmatrix} \text{stone} & \text{large enough} & \text{fast} & \text{smooth} \end{bmatrix} \]

\[
A = \begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 \\
\end{bmatrix}
\]

<table>
<thead>
<tr>
<th>(\sigma_i)</th>
<th>(\mathbf{v}_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.715</td>
<td>(-0.6357) (-0.3991) (-0.4362) (-0.4362) (-0.2367)</td>
</tr>
<tr>
<td>1.276</td>
<td>0.1118 0.7123 (-0.2444) (-0.2444) (-0.6005)</td>
</tr>
<tr>
<td>1</td>
<td>0 0 0.7071 (-0.7071) 0</td>
</tr>
<tr>
<td>0</td>
<td>0.6621 (-0.5667) (-0.09537) (-0.09537) (-0.4714)</td>
</tr>
<tr>
<td>0</td>
<td>0.3807 0.1101 (-0.4908) (-0.4908) 0.6009</td>
</tr>
</tbody>
</table>
LSA Example

We can see from the singular values that the matrix A has rank = 3 and two redundant dimensions.

- Each singular value is associated to a singular vector.
- We choose the top two singular vectors as our new basis.
- The document vectors are mapped into our new space.

\[A = \begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 1
\end{bmatrix} \quad \hat{V}' = \begin{bmatrix}
-0.6357 & 0.1118 \\
-0.3991 & 0.7123 \\
-0.4362 & -0.2444 \\
-0.4362 & -0.2444 \\
-0.2367 & -0.6005
\end{bmatrix} \]

\[\hat{A} = A\hat{V}' = \begin{bmatrix}
-1.471 & 0.5797 \\
-1.471 & 0.5797 \\
-1.745 & -0.9775
\end{bmatrix} \]
Example

Query

- Query = “fast stone”

To compare queries to document, they must both exist in the same space.

\[q = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \end{bmatrix} \]

\[\hat{q} = q \hat{V}' = \begin{bmatrix} -1.072 & -0.1326 \end{bmatrix} \]
Documents and queries are compared in the topic space using the inner product.

\[s = \hat{A}\hat{q}' \]

\[= AV'(qV')' = \begin{bmatrix} -1.471 & 0.5797 \\ -1.471 & 0.5797 \\ -1.745 & -0.9775 \end{bmatrix} \begin{bmatrix} -1.072 \\ -0.1326 \end{bmatrix} = \begin{bmatrix} 1.5 \\ 1.5 \\ 2 \end{bmatrix} \]
Outline

1. Latent Semantic Analysis
 - Topic Space
 - Building the topic space
 - LSA Example
 - Past Results

2. Query Mapping
 - LSA Problems
 - Query expansion
 - Overcoming the LSA problems
LSA showed improvement over the vector space model for the Cranfield (cran, cisi, cacm, med) data sets.

LSA was used in TREC-3; 10% of the documents were used in the topic space calculations. Displayed small improvements.

Own experiments have shown:

- an improvement over the base VSM using the small Cranfield document sets (\(\sim 1000\) documents).
- very poor precision using larger sets as in AP2, WSJ2 (\(\sim 100,000\) documents).
Outline

1. Latent Semantic Analysis
 - Topic Space
 - Building the topic space
 - LSA Example
 - Past Results

2. Query Mapping
 - LSA Problems
 - Query expansion
 - Overcoming the LSA problems
LSA Precision, Storage and Speed

Problems with precision:

- LSA on large document set produces poor precision.
- Synonymy is covered, polysemy is not.
LSA Precision, Storage and Speed

Problems with precision:
- LSA on large document set produces poor precision.
- Synonymy is covered, polysemy is not.

Problems with query speed:
- Query in topic space has very few zero elements.
- Query process involves examining every term in the index.
- Document and query vectors in the topic space may have negative elements.
- Cannot use accumulator.
LSA Precision, Storage and Speed

Problems with precision:
- LSA on large document set produces poor precision.
- Synonymy is covered, polysemy is not.

Problems with query speed:
- Query in topic space has very few zero elements.
- Query process involves examining every term in the index.
- Document and query vectors in the topic space may have negative elements.
- Cannot use accumulator.

Problems with document vector storage:
- Document vectors in the topic space have very few zero elements.
- Document vector elements are real values.
- Inverted index is useless.
Leaving the topic space

These problems cause us not to be able to use LSA on large document sets. We must leave the topic space, but we don’t have to leave its effects.

We have used:

- documents: term \rightarrow topic
- query: term \rightarrow topic

We have seen that the topic space is too dense
Leaving the topic space

To achieve the same results, we can change to:

- documents: term → topic → term
- query: term

provides sparse query (fast), but dense documents (large storage)

or:

- documents: term
- query: term → topic → term

provides sparse documents (compact), dense query (slow)
Outline

1. Latent Semantic Analysis
 - Topic Space
 - Building the topic space
 - LSA Example
 - Past Results

2. Query Mapping
 - LSA Problems
 - Query expansion
 - Overcoming the LSA problems
Query Expansion

The latter option is a LSA query expansion. The expansion is performed by:

1. Map the query to the reduced dimensional topic space.
2. Map the query back into the term space

\[s = (A V')(q V')' \] \hspace{2cm} (15)
\[= A (V' V) q' \] \hspace{2cm} (16)
\[= AM q' \] \hspace{2cm} (17)
Example
Simple document set
- The stone is large enough
- Large stones are fast
- Fast stones are not smooth enough

\[\mathbf{d} = [\text{stone large enough fast smooth}] \quad \mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 \end{bmatrix} \]

\(\sigma_i \)	\(\mathbf{v}_i \)				
2.715	-0.6357	-0.3991	-0.4362	-0.4362	-0.2367
1.276	0.1118	0.7123	-0.2444	-0.2444	-0.6005
1	0	0	0.7071	-0.7071	0
0	0.6621	-0.5667	-0.09537	-0.09537	-0.4714
0	0.3807	0.1101	-0.4908	-0.4908	0.6009
Query map example

Example

Simple document set
- The stone is large enough
- Large stones are fast
- Fast stones are not smooth enough

\[d = [\text{stone large enough fast smooth}] \]

\[A = \begin{bmatrix}
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 \\
\end{bmatrix} \]

\[
\begin{array}{c|cccccc}
\sigma_i & v_1 & v_2 & v_3 & v_4 & v_5 & v_6 \\
\hline
2.715 & -0.6357 & -0.3991 & -0.4362 & -0.4362 & -0.2367 \\
1.276 & 0.1118 & 0.7123 & -0.2444 & -0.2444 & -0.6005 \\
1 & 0 & 0 & 0.7071 & -0.7071 & 0 \\
0 & 0.6621 & -0.5667 & -0.09537 & -0.09537 & -0.4714 \\
0 & 0.3807 & 0.1101 & -0.4908 & -0.4908 & 0.6009 \\
\end{array}
\]
Query map example

We can see from the singular values that the matrix A has rank = 3 and two redundant dimensions.

- Each singular value is associated to a singular vector.
- We choose the top two singular vectors as our new basis.
- The basis is multiplied by its inverse to create our query map.

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 \end{bmatrix} \quad \hat{V}' = \begin{bmatrix} -0.6357 & 0.1118 \\ -0.3991 & 0.7123 \\ -0.4362 & -0.2444 \\ -0.4362 & -0.2444 \\ -0.2367 & -0.6005 \end{bmatrix}$$

$$M = \hat{V}'\hat{V} = \begin{bmatrix} 0.4167 & 0.3333 & 0.25 & 0.25 & 0.08333 \\ 0.3333 & 0.6667 & 0 & 0 & -0.3333 \\ 0.25 & 0 & 0.25 & 0.25 & 0.25 \\ 0.25 & 0 & 0.25 & 0.25 & 0.25 \\ 0.08333 & -0.3333 & 0.25 & 0.25 & 0.4167 \end{bmatrix}$$
Query map example - expanding the query

Example

Query

- Query = “fast stone”

To compare queries to document, they must both exist in the same space.

\[
\mathbf{q} = [1 \ 0 \ 0 \ 1 \ 0]
\]

\[
\hat{\mathbf{q}}' = M\mathbf{q}' = [0.6667 \ 0.3333 \ 0.5 \ 0.5 \ 0.3333]'
\]
Documents and queries are compared in the term space using the inner product.

\[s = A\hat{q}' = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0.6667 \\ 0.3333 \\ 0.5 \\ 0.5 \\ 0.3333 \end{bmatrix} = \begin{bmatrix} 1.5 \\ 1.5 \\ 2 \end{bmatrix} \]

This provides the same score as in LSA, but we can identify the term relationships.
Examining the query map

We can now observe the term relationships.

\[
\begin{bmatrix}
\text{stone} & \text{large} & \text{enough} & \text{fast} & \text{smooth} \\
\hline
\text{stone} & 0.4167 & 0.3333 & 0.25 & 0.25 & 0.08333 \\
\text{large} & 0.3333 & 0.6667 & 0 & 0 & -0.3333 \\
\text{enough} & 0.25 & 0 & 0.25 & 0.25 & 0.25 \\
\text{fast} & 0.25 & 0 & 0.25 & 0.25 & 0.25 \\
\text{smooth} & 0.08333 & -0.3333 & 0.25 & 0.25 & 0.4167 \\
\end{bmatrix}
\]
Outline

1. Latent Semantic Analysis
 - Topic Space
 - Building the topic space
 - LSA Example
 - Past Results

2. Query Mapping
 - LSA Problems
 - Query expansion
 - Overcoming the LSA problems
Mixing LSA with the VSM

- LSA was shown to under represent the query terms.
- One solution: mix the LSA and VSM scores.
- Can be combined into the one mapping.

\[
s = \alpha AMq' + (1 - \alpha)Aq'
\]
\[
= \alpha AMq' + (1 - \alpha)AIq'
\]
\[
= A(\alpha M + (1 - \alpha)I)q'
\]
\[
= AM_\alpha q'
\]

Note: \(\alpha = 0 \Rightarrow s = \text{VSM}, \quad \alpha = 1 \Rightarrow s = \text{LSA} \).
Results: LSA + VSM

Effect of mixture

mix

prec.10
Results: LSA + VSM

Effect of mixture

prec.10

mix

0.0 0.2 0.4 0.6 0.8
0.35 0.36 0.37 0.38 0.39
Query times are long due to the dense query vector.

Now that we have our query expanded into terms, we can select which terms we want and reduce the query time.

This allows the mapping to be used by large document sets.
Results: Term selection

Effect of expansion size

prec.10
Results: Term selection

Effect of expansion size

- Expansion size
- Prec. 10

<table>
<thead>
<tr>
<th>Expansion Size</th>
<th>Prec. 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.360</td>
</tr>
<tr>
<td>20</td>
<td>0.370</td>
</tr>
<tr>
<td>50</td>
<td>0.380</td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>
Expansion term set

- If terms were removed from LSA, they will not contribute to the document score.
- By mixing LSA with the VSM we are guaranteed to have the query term in the expanded query.
- Therefore, we can be more selective about the LSA terms.
- This allows the mapping to be used by large document sets.

Hypothesis

LSA is unable to construct effective term relationships with under sampled terms.

We experimented by removing those terms that appeared in less than N documents.
Results: Remove under sampled terms

Effect of removing terms from map

Document count

prec.10
Results: Remove under sampled terms

Effect of removing terms from map

Document count

prec.10
Topic space size

Problem: how many eigenvalues do we choose?
The mapping is a $t \times t$ matrix (where t is the number of terms chosen).

The size is independent of the number of eigenvalues chosen.

The mapping is stored as an index for fast term look up.

Accumulator is used to obtain top ranking terms for expanded query.

Floating point values are quantised to 64 levels (6 bits).
Other possibilities

- Multiple query maps from different sources can assist in expanding polysemous terms.
Problems covered

Problems with precision:

- LSA on large document set produces poor precision.
- Synonymy is covered, polysemy is not.

Problems with query speed:

- Query in topic space has very few zero elements.
- Query process involves examining every term in the index.
- Document and query vectors in the topic space may have negative elements.
- Cannot use accumulator.

Problems with document vector storage:

- Document vectors in the topic space have very few zero elements.
- Document vector elements are real values.
- Inverted index is useless.
Problems covered

Problems with precision:
- LSA on large document set produces poor precision.
- Synonymy is covered, polysemy is not.

Problems with query speed:
- Query in topic space has very few zero elements.
- Query process involves examining every term in the index.
- Document and query vectors in the topic space may have negative elements.
- Cannot use accumulator.
Problems covered

Problems with precision:
- LSA on large document set produces poor precision.
- Synonymy is covered, polysemy is not.

Problems with query speed:
- Query in topic space has very few zero elements.
- Query process involves examining every term in the index.
- Document and query vectors in the topic space may have negative elements.
- Cannot use accumulator.

Problems with document vector storage:
- Document vectors in the topic space have very few zero elements.
- Document vector elements are real values.
- Inverted index is useless.
Conclusion

- Latent semantic analysis (LSA) is a simple concept with firm mathematical foundations, but it has many problems.
- We proposed a query expansion which utilises LSA and overcomes most of the problems.