
A Logical Multi-Demand Bargaining Model with

Integrity Constraints

Xiaoxin Jinga, Dongmo Zhangb,∗, Xudong Luoa,∗∗, Jieyu Zhana

aInstitute of Logic and Cognition, Sun Yat-sen University, China.
bIntelligent System Lab, University of Western Sydney, Australia.

Abstract

This paper proposes a logical model of multi-demand bargaining with in-
tegrity constraints. We also construct a simultaneous concession solution to
bargaining games of this kind, and show that the solution is uniquely char-
acterised by a set of logical properties. Moreover, we prove that the solution
also satisfies the most fundamental game theoretic properties such as sym-
metry and Pareto optimality. In addition, by lots of simulation experiments
we study how the number of conflicting demands, bargainers’ risk attitude,
and bargainer number influence the bargaining success-rate and efficiency as
well as the agreement quality.
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1. Introduction

Bargaining is a process to settle disputes and reach mutually agreements.
It has been investigated from many perspectives, including economics, social
science, political science and computer science [20, 4, 25, 23, 11, 8, 30]. Al-
though quantitative approaches dominate bargaining analysis, recently some
studies of bargaining in computer science, especially in artificial intelligence,
start to pay some attention to logical reasoning behind bargaining processes.
In fact, a number of logical frameworks were proposed for specifying reason-
ing procedures of bargaining [30, 15, 22, 17, 33, 29]. In particular, similar to
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Nash’s axiomatic, quantitative model of bargaining, Zhang in [30] proposed
an axiomatic model of bargaining in propositional logic. With his model,
bargainers’ demands are represented in propositional formulae and the out-
come of bargaining is viewed as a mutual acceptance of the demands after
necessary concessions from each bargainer.

Although Zhang’s model provides a purely qualitative approach for bar-
gaining analysis, there is a difficulty to apply his approach to the real-life
bargaining. As mentioned in [30], the demands of a player are not nec-
essarily the player’s real demands but “may be the player’s beliefs, goals,
desired constraints or commonsense”. This could be a problem. For exam-
ple, a couple bargains over where to go for dinner: either a French restau-
rant (denoted by f) or an Italian restaurant (denoted by i). The husband
prefers Italian food to French food but his wife likes the romantic environ-
ment in French restaurants more than Italian ones, even though they have
some favourite dishes in common, which may or may not be offered in both
restaurants. Obviously each bargainer can express his/her demands in propo-
sitional language by writing down their favourite restaurant and dishes, say
{Italian, pizza}. However, if we use Zhang’s model, all the domain con-
straints, such as (¬French ∨ ¬Italian) ∧ pizza → Italian, have to be in-
cluded in the demand set of each player, which does not seem intuitive. This
paper is devoted to providing a solution to this issue.

Similar to belief merging [13], specifying domain constraints, also known
integrity constraints, in a bargaining model gives a number of challenges
to the modelling of bargaining reasoning. Firstly, simply assuming logical
consistency of individual demand sets is not enough because new constraints
may be generated after combining all constraints from individual bargainers
as logical consequences. Secondly, preference ordering relies on constraints
and therefore a logical requirement for the rationality of preference ordering
has to be applied. Finally, constraints and demands from individuals may
be described in different forms. It is crucial that a bargaining solution does
not rely on the syntax of description, which is actually the case for Zhang’s
system. As we will see, our model of bargaining is syntax-irrelevant, which
in fact reshapes the whole axiomatic system.

The rest of the paper is organised as follows. Section 2 defines our bar-
gaining model. Section 3 introduces our solution concept. Section 4 reveals
some properties of our model. Section 5 studies the influence factors for
the solution with experiment analysis. Section 6 discusses the related work.
Finally, Section 7 summarises our main contributions and points out some
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possible future work.

2. Bargaining Model

This section presents our bargaining model. We consider a propositional
language L built from a finite set P of propositional letters and the stan-
dard propositional connectives {¬,∨,∧,→,↔}. Propositional sentences are
denoted by φ, ψ, · · · . We use ` to denote the logical deduction relation in
classical propositional logic, and Cn to denote the corresponding local con-
sequence closure. A set K of sentences in L is logically closed if and only if
K = Cn(K), where Cn(K) = {φ | φ ∈ L, K ` φ}.

Further, let Φ be a finite set of propositional formulae in L. We say that
Φ is consistent if there is no formula φ such that Φ ` φ and Φ ` ¬φ. A binary
relation ≥ over Φ is a pre-order if and only if it is a reflexive and transitive
relation over Φ. A pre-order is total if for all φ, ψ ∈ Φ, φ ≥ ψ or ψ ≥ φ.
Given a pre-order ≥ over Φ, we define φ > ψ as φ ≥ ψ and ψ � φ, and φ ' ψ
as φ ≥ ψ and ψ ≥ φ. Moreover, if φ ≥ ψ then ψ ≤ φ; and if φ > ψ then
ψ < φ.

2.1. Bargaining Games

Following [30], we assume that each bargainer has a set of demands and
a preference order over the demand set. As we will show later, the domain
constraints, commonsense knowledge, and other integrity constraints will be
specified separately and so need not to be included in the individual demand
set.

Definition 1. A demand structure D is a pair (X,≥), where X is a
finite, logically consistent set of demands that are represented by a set of
sentences in L, and ≥ is a total pre-order on X, which satisfies:

(LC) If φ1, · · · , φn ` ψ, then there exists at least one k ∈ {1, · · · , n} such
that ψ ≥ φk.

Intuitively, a demand structure represents the statements a bargainer
wants to put into the agreement, and the total pre-order over the demands
is the description for bargainer’s preference over the demands, i.e., φ ≥ ψ
means the bargainer holds demand φ more firmly than demand ψ. In addi-
tion, the logical constraint LC, introduced by Zhang and Foo in [31], places
a rationality requirement on the preference ordering, which says that if a
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demand of ψ is a logic consequence of demands φ1, · · · , φn then the firmness
to keep ψ should not be less than at least one formula in φ1, · · · , φn.

The firmness of the demand is analogous to the epistemic entrenchment of
the belief in [1]. Consider demands φ1, · · · , φn and ψ such that φ1, · · · , φn `
ψ. On the one hand, if a bargainer decides to give up demand ψ then he also
has to give up at least one φk (otherwise logical closure will brings ψ back).
On the other hand, it is possible to give up φ1, · · · , φn while retain ψ. Hence,
ψ is as firm as at least one φk(k = 1, · · · , n). In this paper, we consider that
the demand set of each bargainer is non-empty because no bargainers would
participate in the bargaining for nothing.

In a bargaining scenario, an integrity constraint means a rule that all
participants in the bargaining must follow. Such a rule could be something
like domain restrictions, generic settings, commonsense knowledge and so
on. As we will see below, we assume that any integrity constraint can be
represented by a propositional formula and all integrity constraints for each
bargaining situation are logically consistent. The following definition extends
[30]’s bargaining model to allow integrity constraints.

Definition 2. A bargaining game is a tuple of 〈(Xi,≥i)i∈N , IC〉, where

(i) N = {1, 2, · · · , n} is a set of bargainers;

(ii) (Xi,≥i) is the demand structure of bargainer i; and

(iii) IC is a consistent set of sentences (i.e., integrity constraints).

The set of all bargaining games in language L is denoted by GIC
n,L.

A bargaining game specifies a snapshot of a bargaining procedure. As
we will demonstrate, we model a bargaining procedure as a sequence of bar-
gaining games. Normally, a bargaining starts with a situation in which the
demands of the bargainers conflict each other. With the proceeding of ne-
gotiation, bargainers may make concessions in order to reach an agreement.
Eventually, the bargaining terminates with either an agreement or a disagree-
ment. The terminal situations can be specified in the follow two specific
games:

Definition 3. A bargaining game 〈(Xi,≥i)i∈N , IC〉 is non-conflictive if⋃n
i=1 Xi ∪ IC is logically consistent. It is a disagreement if there is k ∈ N

such that Xk = ∅.
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Note that a disagreement means that there is a bargainer who has nothing
to give up.1

2.2. Demand Hierarchy and Comprehensiveness

Before introducing a solution concept for our bargaining model, we need
to introduce a number of concepts about single bargainer’s demand structure
first.

Definition 4. Given a demand structure D = (X,≥) where X 6= ∅, P =
(X1, · · · , XL) is the partition of D if it satisfies:

(i) ∀l ∈ {1, · · · , L}, X l 6= ∅;

(ii) X =
⋃L
l=1X

l;

(iii) Xk ∩X l = ∅, where k, l ∈ {1, · · · , L} but k 6= l; and

(iv) ∀φ ∈ Xk, ∀ψ ∈ X l, φ > ψ if and only if k < l, where k, l ∈ {1, · · · , L}.

Now we define the demand hierarchy under IC using the partition above.

Definition 5. Given a demand structure D = (X,≥) and a set of integrity
constraints IC, let P = (X1, · · · , XL) be a partition of D. Then the hier-
archy of D under IC is defined as follows:

(i) H1 = Cn(X1 ∪ IC), and

(ii) Hk+1 = Cn(
⋃k+1
i=1 X

i ∪ IC)\
⋃k
i=1H

i.

∀φ ∈ Cn(X ∪ IC), we define h(φ) = k if and only if φ ∈ Hk, where k is φ’s
hierarchy level in D. And we write hD = max{h(φ) | φ ∈ Cn(X ∪ IC)} as
the height of D. In addition, ∀φ, ψ ∈ X, suppose φ ∈ Hk and ψ ∈ Hj, we
write

φ ≥IC ψ iff k ≤ j.

For simplicity, we assume that H i 6= ∅ for all i. In fact, if there is k ∈ N+

such that Hk is ∅, we can remove all empty levels and let the remaining
hierarchy as the hierarchy of D. Since ≥ is a total pre-order on X, it is easy
to see that ≥IC is also a total pre-order on Cn(X ∪ IC).

1In the real-life bargaining, a bargainer may declare a disagreement when he finds that
an agreement would not be reached without giving up all his reservation demands.
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Definition 6. Given a demand structure D = (X,≥) and a set of integrity
constraints IC, Ω is an IC-comprehensive set of D if:

(i) Ω ⊆ Cn(X ∪ IC);

(ii) Ω = Cn(Ω); and

(iii) ∀φ ∈ Ω, ∀ψ ∈ Cn(X ∪ IC), ψ ≥IC φ implies ψ ∈ Ω.

In other words, a subset of Cn(X ∪ IC) is IC-comprehensive if it is
logically and ordinally closed under ≥IC . We denote the set of all IC-
comprehensive sets of D by ΓIC(D), or Γ(D) if IC is obvious from the context.

The following theorem is important to our bargaining solution.

Theorem 1. Given a demand structure D = (X,≥) and a set of integrity
constraints IC, a set Ω is an IC-comprehensive set of D if and only if there
exists k ∈ {1, · · · , hD} such that Ω =

⋃k
i=1H

i.

Proof. (⇒) We first prove that if Ω ∈ Γ(D) then there exists k ∈ {1, · · · , hD}
such that Ω = T k, where T k =

⋃k
i=1H

i. Let k0 = min{k | Ω ⊆ T k}. Ob-

viously, 1 ≤ k0 ≤ hD. We aim to prove Ω = T k
0
. By the definition of k0,

Ω ⊆ T k
0
. So, we just need to prove T k

0 ⊆ Ω. Suppose it is not the case. Then
there must exist ψ such that ψ ∈ T k0 but ψ /∈ Ω. Since Ω ∈ Γ(D), ∀φ ∈ Ω,
we have ψ ∈ Cn(X ∪ IC) and ψ /∈ Ω, and then ψ <IC φ. So, h(ψ) > h(φ).
∀φ ∈ Ω, we have 1 ≤ h(φ) ≤ k0. In addition, k0 = min{k | Ω ⊆ T k}.
Therefore, h(ψ) > k0. However, ψ ∈ T k0 , and then 1 ≤ h(ψ) ≤ k0, which is
contradicting. Therefore, the assumption is false, i.e., we have T k

0 ⊆ Ω. As
a result, if Ω ∈ Γ(D), we can find k = k0 such that Ω = T k

0
.

(⇐) ∀k ∈ {1, · · · , hD}, we need to prove T k ∈ Γ(D). Because

T k =
k⋃
i=1

H i = Cn(
k⋃
i=1

X i ∪ IC),

we know that T k is closed. In addition, ∀k ∈ {1, · · · , hD},
⋃k
i=1X

i ⊆ X, and
then

T k = Cn(
k⋃
i=1

X i ∪ IC) ⊆ Cn(X ∪ IC).
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∀k ∈ {1, · · · , hD}, ∀φ ∈ T k, and ψ ∈ Cn(X ∪ IC), if ψ ≥IC φ, we need to
prove ψ ∈ T k. Suppose it is not this case, i.e., ψ /∈ T k. Because

T k = Cn(X ∪ IC)\
hD⋃

i=k+1

H i,

then ψ ∈
⋃hD
i=k+1H

i, and so k + 1 ≤ h(ψ) ≤ hD. In addition, since φ ∈ T k,
T k =

⋃k
i=1H

i, 1 ≤ h(φ) ≤ k. So, we can get h(ψ) > h(φ), and then φ >IC ψ,
which contradicts premise ψ ≥IC φ. Therefore, the assumption is false. 2

The following defines the equivalence of demand structures under integrity
constraints, which plays an important role for describing syntax indepen-
dency:

Definition 7. Let D = (X,≥) and D′ = (X ′,≥′) be two demand structures,
where X 6= ∅ and X ′ 6= ∅, IC is a set of integrity constraints. We say D and
D′ are equivalent under IC, denoted as D ⇔IC D′, if and only if there is
Γ(D) = Γ(D′).

3. Bargaining Solution

In this section, we will develop our solution concept for the bargaining
model we introduced in the previous section.

Definition 8. A solution to bargaining game G, denoted as S, is a function
from GIC

n,L to
∏n

i=1 Γ(Di), i.e.,

∀G ∈ GIC
n,L, S(G) = (s1(G), · · · , sn(G)), (1)

where si(G) ∈ Γ(Di) for each i. Then the agreement of the bargaining game
is defined as:

A(G) = Cn(
n⋃
i=1

si(G)). (2)

Intuitively, the agreement of a bargaining is a set of demands mutually
accepted by all the bargainers. A bargaining solution is then to specify which
demands from each bargainer should be put into the final agreement.

In the following, we will construct a concrete bargaining solution that
satisfies a set of desirable properties. The intuition behind the construction
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can be stated as follows: assume a bargaining situation where all bargainers
agree on a set of integrity constraints IC. Firstly, all the bargainers sub-
mit their demands to an arbitrator who also knows IC. The arbitrator then
judges if the current bargaining situation forms a non-conflictive game or a
disagreement game. If so, the bargaining stops with either an agreement,
which is the collection of all the demands, or a disagreement, which is an
empty set. Otherwise, the arbitrator requests each bargainer to make a con-
cession by withdrawing their least preferred demands. We call such a solution
a simultaneous concession solution. Formally, we have:

Definition 9. Given a bargaining game G = 〈(Xi,≤i)i∈N , IC〉, its simul-
taneous concession solution, denoted as Ssc(G), is constructed as follows:

Ssc(G) =

{
(H
≤hD1

−ρ
1 , · · · , H≤hDn−ρ

n ) if ρ < L,
(∅, · · · , ∅) otherwise,

(3)

where ∀i ∈ N , H≤ji =
⋃j
k=1H

k
i (Hk is defined in Definition 5), hDi

is the

height of Di, ρ = min{k |
⋃n
i=1H

≤hDi
−k

i is consistent}, and L = min{hDi
|

i ∈ N}.

For a better understanding of the above definition, let us discuss the
restaurant example in the introduction again.

Example 1. A couple bargains over which restaurant to go to celebrate their
wedding anniversary: either Italian (i) or French (f). The husband (h) likes
to eat pizza (p). Alternatively, he is also fine with beefsteak (b) and vegetable
salads (v). In fact, he does not mind to go to the French restaurant but
cannot bear people eating snails (s). The wife (w) leans towards the romantic
French restaurant and particular likes the vegetable salads. She would like to
try snails once as all her friends recommend it. Both know that pizza is only
offered in the Italian restaurant (p→ i) and snails only offered in the French
restaurant (s → f). Obviously they can only choose one restaurant for the
dinner (¬i ∨ ¬f).

Putting all the information together, the husband’s demands can be writ-
ten as:

Xh = {¬s, p, v, b}
with the preference:

¬s ≥h p ≥h v ≥h b;
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Husband Wife
¬s, ¬i ∨ ¬f , p→ i, s→ f
p, i, ¬f v, ¬i ∨ ¬f , p→ i, s→ f
v f , ¬i, ¬p
b s

Table 1: Player’s hierarchies from high (top) to low (bottom).

the wife’s demands are
Xw = {v, f, s}

with the preference:
v ≥w f ≥w s;

and the integrity constraints can be represented by

IC = {¬i ∨ ¬f, p→ i, s→ f}.

Thus, we can model the game as:

G = 〈(Xh,≥h), (Xw,≥w), IC〉.

To solve the problem, we first calculate the normalised hierarchy for each
player according to Definition 5 as shown in Table 1. From the table, it is
easy to see that hDh

= 4, h(Dw) = 3, ρ = 2, and L = 3. Then the solution
of the bargaining game is:

sh(G) = H≤2h = {¬s,¬i ∨ ¬f, p→ i, s→ f, p, i,¬f},
sw(G) = H≤1w = {v,¬i ∨ ¬f, p→ i, s→ f}.

As a result, the agreement of the bargaining is:

A(G) = Cn(H≤2h ∪H
≤1
w ) = {¬s,¬i ∨ ¬f, p→ i, s→ f, p, i,¬f, v}.

4. Properties of the Solution

In this section, we investigate the properties of the solution that we con-
struct in the previous section. To this end, we need to introduce a few
concepts first.
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Definition 10. Given two bargaining games G = 〈(Di)i∈N , IC〉 and G′ =
〈(D′i)i∈N , IC ′〉, we say G and G′ are equivalent, denoted by G ≡ G′, if and
only if

(i) both G and G′ are disagreement games; or

(ii) none of G and G′ is a disagreement game, ` IC ↔ IC ′ and Di ⇔IC D′i
∀i ∈ N .

Definition 11. Given a bargaining game G = 〈(Di)i∈N , IC〉, a bargaining
game G′ = 〈(D′i)i∈N , IC ′〉, where Di=(X ′i,≥i), is a subgame of G, denoted
by G′ ⊆ G, if and only if ∀i ∈ N ,

(i) IC ` IC ′ and IC ′ ` IC (we write it simply as ` IC ↔ IC ′);

(ii) Cn(X ′i ∪ IC ′) is an IC-comprehensive set of Di; and

(iii) ≥′IC
′

i = ≥ICi ∩(Cn(X ′i ∪ IC ′)× Cn(X ′i ∪ IC ′)).

Furthermore, G′ is a proper subgame of G, denoted by G′ ⊂ G, if Cn(X ′i ∪
IC ′) ⊂ Cn(Xi ∪ IC) ∀i ∈ N .

Intuitively, each subgame represents a stage in G or these games that are
equivalent to that stage. However, it does not mean that any game has a
proper subgame. For example, given a bargaining game G = 〈(Di)i∈N , IC〉,
and hDi

= 1 for any Di in G, then G does not have any proper subgame. Of
course, a game could have more than one proper subgames. Thus, we need
the following concept:

Definition 12. A proper subgame G′ of G is a maximal proper subgame
of G, denoted by G′ ⊂max G, if for any G′′ ⊂ G, G′′ ⊆ G′.

4.1. Logical Characterisation

We first consider the logical properties of our bargaining solution. In
general, we expect any bargaining solution to satisfy some intuitions as fol-
lows. (i) If the integrity constraints are consistent, then the outcome of the
bargaining, i.e., the agreement, should also be consistent. (ii) If there is
no conflict among all the bargainers’ demands and the integrity constraints,
then nobody has to make any concession to reach an agreement. (iii) A dis-
agreement means that no agreement is reached. (iv) If two bargaining games
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are equivalent, then the solutions of bargaining are the same. This property
is crucial for the bargaining, while as we can see, it is not satisfied in [30]. (v)
A bargaining solution should be independent of any minimal simultaneous
concession of the bargaining game. In this subsection, we will show that our
simultaneous concession solution satisfies all the five properties.

Firstly we need the following lemma:

Lemma 1. Given two bargaining games G (where hDi
> 1 for any Di in G)

and G′, G′ is a maximal proper subgame of G if and only if ∀i,

(i) ` IC ↔ IC ′;

(ii) Cn(X ′i ∪ IC ′) = H
≤hDi

−1
i ; and

(iii) ≥′IC
′

i = ≥ICi ∩(Cn(X ′i ∪ IC ′)× Cn(X ′i ∪ IC ′)).

Proof. (⇐) We will prove that if G′ satisfies properties (i)-(iii). G′ is a
maximal proper subgame of G. Because property (ii) is satisfied, G is not a
disagreement. Thus, we need to prove G′ ⊂ G first. Since we find properties
(i) and (iii) are the same as (i) and (iii) in Definition 11, we just need to

prove (ii), i.e., Cn(X ′i ∪ IC ′) = H
≤hDi

−1
i is an IC comprehensive set of Di

and Cn(X ′i ∪ IC ′) ⊂ Cn(Xi ∪ IC). Because hDi
> 1 for any Di in G,

by Theorem 1, H
≤hDi

−1
i =

⋃hDi
−1

j=1 Hj
i is an IC comprehensive set of Di. In

addition, since H
hDi
i 6= ∅, T hDi

−1
i = Cn(Xi ∪ IC)\HhDi

i ⊂ Cn(Xi ∪ IC).
Next, for G′′ = 〈D′′i∈N ,≥′′〉, if G′′ ⊂ G, we need to prove G′′ ⊆ G′.

Because G′′ ⊂ G and G′ ⊂ G, (a) IC ′′ ↔ IC ↔ IC ′; (b) Cn(X ′′i ∪ IC ′′) and
Cn(X ′i ∪ IC ′) are IC comprehensive sets of Di for all i; and (c) ≥′′ICi = ≥ICi
∩(Cn(X ′′i∪IC ′′)×Cn(X ′′i∪IC ′′)) = ≥′ICi ∩(Cn(X ′′i ∪IC ′′)×Cn(X ′′i ∪IC ′′)).
In addition, Cn(X ′′i ∪IC ′′) ⊂ Cn(Xi∪IC) and Cn(X ′i∪IC ′′) ⊂ Cn(Xi∪IC)
for all i. So, we just need to prove Cn(X ′′i ∪ IC ′′) is an IC comprehensive set
of D′i for all i.

We prove Cn(X ′′i ∪ IC ′′) ⊆ Cn(X ′i ∪ IC ′) first. Suppose not. Then
there is φ ∈ Cn(X ′′i ∪ IC ′′) but φ /∈ Cn(X ′i ∪ IC ′). From Cn(X ′i ∪ IC ′) =

H
≤hDi

−1
i = Cn(Xi ∪ IC)\HhDi

i and Cn(X ′′i ∪ IC ′′) ⊂ Cn(Xi ∪ IC), we

derive that φ ∈ HhDi
i . Therefore, h(φ) = hDi

. Because ∀ψ ∈ Cn(Xi ∪ IC),
h(ψ) ≤ hDi

, ψ ≥IC φ, and Cn(X ′′i ∪ IC ′′) is an IC-comprehensive set of Di,
ψ ∈ Cn(X ′′i ∪ IC ′′), which implies Cn(Xi ∪ IC) ⊆ Cn(X ′′i ∪ IC ′′). However,
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this contradicts Cn(X ′′i ∪ IC ′′) ⊂ Cn(Xi ∪ IC). So, the assumption cannot
hold. Thus, Cn(X ′′i ∪ IC ′′) ⊆ Cn(X ′i ∪ IC ′).

Because G′ ⊂ G and G′′ ⊂ G, for all i, Cn(X ′i ∪ IC ′) and Cn(X ′′i ∪
IC ′′) are both IC-comprehensive sets of Di. Thus, ∀φ ∈ Cn(X ′′i ∪ IC ′′),
∀ψ ∈ Cn(X ′i ∪ IC ′) (thus we have ψ ∈ Cn(Xi ∪ IC)), if ψ ≥IC φ then
ψ ∈ Cn(X ′′i ∪ IC ′′). Therefore, Cn(X ′′i ∪ IC ′′) is an IC comprehensive set of
D′i. Furthermore, G′′ ⊆ G′.

(⇒) If G′ is a maximal proper subgame of G, then properties (i)–(iii) in
this lemma are satisfied.

Firstly, because G has at least one proper subgame G′, ∀i ∈ N , Xi 6= ∅
and Cn(X ′i∪IC ′) ⊂ Cn(Xi∪IC). If G′ is a maximal proper subgame of G, by
Definitions 11 and 12, properties (i) and (iii) of this lemma are satisfied, and
so we just need to prove its property (ii). Suppose not, i.e., Cn(X ′i∪ IC ′) 6=
H
≤hDi

−1
i . Because G′ is a proper subgame of G, Cn(X ′i ∪ IC ′) is an IC

comprehensive set of Di. Thus, by Theorem 1, there exists k ∈ [1, hDi
], such

that Cn(X ′i ∪ IC ′) =
⋃k
j=1H

j
i . So, because Cn(X ′i ∪ IC ′) ⊂ Cn(Xi ∪ IC)

and Cn(X ′i ∪ IC ′) 6= H
≤hDi

−1
i , we have k < hDi

− 1.
Here we can find a subgame of G′′ as proved above such that: (a) ` IC ↔

IC ′′; (b) Cn(X ′′i∪IC ′′) = H
≤hDi

−1
i ; and (c)≥′′IC

′′

i = ≥ICi ∩(Cn(X ′′i∪IC ′′)×
Cn(X ′′i ∪ IC ′′)). Then G′′ ⊂ G. Thus, because

k < hDi
− 1,

k⋃
j=1

Xj
i ⊂

hDi
−1⋃

j=1

Xj
i ,

we have:

k⋃
j=1

Hj
i = Cn(

k⋃
j=1

Xj
i ∪ IC) ⊂ Cn(

hDi
−1⋃

i=1

Xj
i ∪ IC) = H

≤hDi
−1

i .

So, we have G′′ ⊃ G′. This contradicts that G′ is a maximal proper subgame

of G. So, the assumption is false. Thus, Cn(X ′i ∪ IC ′) = H
≤hDi

−1
i . 2

Now we are ready to prove our solution satisfies the five properties, which
reflect basic requirements that a solution should meet:

Theorem 2. Given a bargaining game G = 〈(Xi,≤i)i∈N , IC〉, let its simul-
taneous concession solution be Ssc(G) and its agreement be A(G). Then the
following properties hold:
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(i) Consistency: If IC is consistent, then A(G) is consistent.

(ii) Non-conflictive: If G is non-conflictive, then Ssc(G) = (Cn(Xi∪IC)i∈N .

(iii) Disagreement: If G is a disagreement, then A(G) = ∅.

(iv) Equivalence: If G ≡ G′, then Ssc(G) = Ssc(G
′).

(v) Contraction independence: If G′ ⊂max G then Ssc(G) = Ssc(G
′) unless

G is non-conflictive.

Proof. (i) Suppose IC is consistent. Given an IC bargaining game G, if
ρ ≥ L then Ssc(G) = (∅, · · · , ∅). So, A(G) = ∅. Obviously, it is consistent.
If ρ < L, then

Ssc(G) = (H
≤hD1

−ρ
1 , · · · , H≤hDn−ρ

n ),

because by Definition 9, we have

ρ = min{k |
n⋃
i=1

H
≤hDi

−k
i is consistent}.

So, A(G) = Cn(
⋃n
i=1H

≤hDi
−ρ

i ) is consistent. That is, the consistency prop-
erty holds.

(ii) If G is non-conflictive, by Definition 3,
⋃n
i=1Xi ∪ IC is consistent.

Then we can easily get ρ = 0 and L ≥ 1. Thus, we have:

Ssc(G) = (H
≤hDi

−0
i )i∈N = (H

≤hDi
i )i∈N .

Then, noticing hDi
= max{h(φ) | ∀φ ∈ Cn(Xi ∪ IC)}, we have:

H
≤hDi
i = Cn(

hDi⋃
j=1

Xj
i ∪ IC) = Cn(Xi ∪ IC).

So, Ssc(G) = (Cn(Xi ∪ IC))i∈N .
(iii) If G is a disagreement, by Definition 3, there exists k such that

Xk = ∅, and then L = 0; but ρ ≥ 0. So, ρ ≥ L. Thus, si(G) = ∅ for any i.
Furthermore, A(G) = Cn(

⋃n
i=1 si(G)) = ∅.

(iv) Given two bargaining games G = 〈(Xi,≥i)i∈N , IC〉 and G′ = 〈(X ′i,≥′i
)i∈N , IC

′〉 such that G ≡ G′. By Definitions 10 and 7, if G is a disagreement,

13



so is G′; otherwise, IC ↔ IC and Γ(D) = Γ(D′). Therefore, if G is non-
conflictive, it is easy to see that G′ is non-conflictive. So, Ssc(G) = Ssc(G

′).
Otherwise, we can easily have hDi

= hD′
i
, ρ = ρ′ and L = L′. In addi-

tion, since H
≤hDi

−ρ
i = H ′

≤hD′
i
−ρ′

i , we have Ssc(G) = Ssc(G
′). That is, the

equivalence property holds.
(v) Consider a bargaining game G = 〈(Xi,≥i)i∈N , IC〉. (a) If L = 0, then

∃k,Xk
i = ∅, which means G has no proper subgames. Then Ssc(G) satisfies

the contraction independence property trivially. (b) If L > 0 then because G
is not non-conflictive, ρ > 0. Assume G′ = 〈(X ′i,≥′i)i∈N , IC ′〉 is a maximal

proper subgame of G. Let ρ′ = min{k′ |
⋃n
i=1H

′
≤hD′

i
−k′

i is consistent} and
L′ = min{h′Di | i ∈ N}. By Lemma 1, ∀i ∈ N , ` IC ↔ IC ′; Cn(X ′i∪IC ′) =

H
≤hDi

−1
i ; and ≥′IC

′

i =≥ICi ∩(Cn(X ′i ∪ IC ′) × Cn(X ′i ∪ IC ′)). Obviously,
L′ = L− 1 and ρ′ = ρ− 1, and hD′

i
= hDi

− 1. Therefore, ρ′ < L′ if and only
if ρ < L. If ρ ≥ L, Ssc(G) = Ssc(G

′) = (∅, · · · , ∅). Otherwise, when ρ < L,
∀i ∈ N , we have

Ssc(G) =
(
H
≤hDi

−ρ
i

)
i∈N

=
(
Cn(Xi ∪ IC)\ ∪hDi

j=hDi
−ρ+1 H

j
i

)
i∈N

=
((
Cn(Xi ∪ IC)\HhDi

i

)
\ ∪hDi

−1
j=hDi

−ρ+1 H
j
i

)
i∈N

=

(
H
≤hDi

−1
i \ ∪

hD′
i

j=hD′
i
−ρ′+1 H

j
i

)
i∈N

=

(
Cn(X ′i ∪ IC ′)\ ∪

hD′
i

j=hD′
i
−ρ′+1 H

j
i

)
i∈N

=

(
H
≤hD′

i
−ρ′

i

)
i∈N

= Ssc(G
′). (4)

Therefore, the contraction independence property holds. 2

The following theorem shows that the five properties exactly characterise
the simultaneous concession solution (therefore putting these two theorems
together forms a representation theorem of our solution).

Theorem 3. If a bargaining solution s satisfies the properties of consistency,
non-conflictive, disagreement, equivalence, and contraction independence, it
is the simultaneous concession solution.

14



Proof. For any G by induction on ρ, we prove that if a bargaining solution
S(G) satisfies the five properties, it is the simultaneous concession solution
Ssc(G), i.e., S(G) = Ssc(G).

For the base case that ρ = 0, there are two situations. (i) If G is non-
conflictive, according to the non-conflictive property, then we have:

S(G) = (Cn(Xi ∪ IC))i∈N .

Because ρ = 0 and L ≥ 1, ρ < L. Thus, by Definition 9, ∀i ∈ N , we have

Ssc(G) =
(
H
≤hDi

−0
i

)
i∈N

=
(
H
≤hDi
i

)
i∈N

=

Cn
hDi⋃
j=1

Xj
i ∪ IC


i∈N

= (Cn(Xi ∪ IC))i∈N .

So, S(G) = Ssc(G). (ii) If G is a disagreement, by the disagreement property,
we have

S(G) = (∅)i∈N
and there must exist a k such that Xk = ∅ and so L = 0. Since ρ = 0, ρ = L.
Thus, by Definition 9, Ssc(G) = (∅)i∈N . So, S(G) = Ssc(G).

Now we assume that for any game G′ such that ρ′ = k, S(G′) = Ssc(G
′).

Now for a game G in which ρ = k + 1, we aim to prove S(G′) = Ssc(G
′).

Because ρ = k + 1 ≥ 1 in G, G is not a disagreement game nor a non-
conflictive game. Let G′ = 〈(X ′i,≥′i)i∈N , IC ′〉, where: (a) ` IC ↔ IC ′, (b)

Cn(X ′i∪ IC ′) = H
≤hDi

−1
i , and (c) ≥′IC

′

i = ≥ICi ∩(Cn(X ′i∪ IC ′)×Cn(X ′i∪
IC ′)) for any i. So, G′ is a maximal proper game of G. Here ρ′ = ρ− 1 = k,

so by inductive assumption, we have S(G′) = Ssc(G
′) = (H

≤hD′
i
−ρ′

i )i∈N . In
addition, by the contraction independence property, S(G′) = S(G). So, we
just need to prove

Ssc(G) =
(
H
≤hDi

−ρ
i

)
i∈N

=

(
H
≤hD′

i
−ρ′

i

)
i∈N

,

which is similar to formula (4). 2
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4.2. Game-Theoretic Properties

In this subsection, we show that our solution satisfies two fundamental
game-theoretical properties: Pareto efficiency and symmetry. Because game-
theoretical bargaining model is based on utility functions but our bargaining
model is defined on bargainers’ demands, we need to restate Pareto efficiency
and symmetry for our model. Firstly we need two relevant definitions.

Definition 13. Given bargaining game G = 〈(Di)i∈N , IC〉, where Di =
(Xi,≥i), an outcome of G is a tuple of O = (o1, · · · , on), where ∀oi ∈ Γ(Di),⋃n
i=1 oi is consistent.

Definition 14. Given two bargaining games G = 〈D, IC〉 and G′ = 〈D′, IC ′〉,
where D = (Xi,≥i)i∈N and D′ = (X ′i,≥′i)i∈N . We say G and G′ are
symmetric if and only if there is a bijection g from D to D′ such that
∀i ∈ N, g(Di)⇔IC Di, and ` IC ↔ IC ′.

Theorem 4. Let simultaneous concession solution Ssc(G) satisfies:

(i) Weak Pareto efficiency: Given bargaining game G = 〈(Xi,≥i)i∈N , IC〉
satisfying Ssc(G) 6= (∅, · · · , ∅), let O = (oi)i∈N and O′ = (o′i)i∈N be two
possible outcomes of G. If o′i ⊃ oi for all i ∈ N , then Ssc(G) 6= O.

(ii) Symmetry: Suppose that two bargaining games G and G′ are symmetric
with bijection g. Then A(G) = A(G′). Moreover, ∀i, j ∈ N , if g(Di) =
D′j, then si(G) = sj(G

′).

Proof. Firstly, we prove our simultaneous concession solution Ssc satis-
fies the weak Pareto efficiency by the contradiction proof method. Suppose

Ssc(G) = O, then by Definition 9, O = (H
≤hD1

−ρ
1 , · · · , H≤hDn−ρ

n ), where

ρ = min{k |
⋃n
i=1H

≤hDi
−k

i is consistent}. Because o′i ⊃ oi for all i ∈ N ,

o′i = H
≤hDi

−ρ′
i , where hDn − ρ′ > hDn − ρ. Then ρ′ < ρ. By the definition

of ρ,
⋃n
i=1H

≤hDi
−ρ′

i is inconsistent, which means that
⋃n
i=1 o

′
i is inconsistent,

and then O′ is not an outcome of G. This conclusion is conflict with the
premise. So, Ssc(G) 6= O.

Then we prove the simultaneous concession solution satisfies the symme-
try.

(i) If G is a disagreement, there exist at least Xk(k ∈ N) in Dk such
that Xk = ∅, and so L = 0 for bargaining game G. Because G and G′ are
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symmetric, there must be a D′k′ in G′ such that D′k ⇔IC D′k′ , X
′
k′(k

′ ∈ N) =
∅, and so L′ = 0 for bargaining game G′. Thus, ρ ≥ L and ρ′ ≥ L′ in G and
G′, respectively. Therefore, by Definition 9, Ssc(G) = Ssc(G

′) = ∅.
(ii) In the case that G and G′ are not disagreements, since G and G′ are

symmetric, and g(Di) = D′j, by Definition 14, Di ⇔IC D′j for any i, j ∈ N ,
and ` IC ↔ IC ′. Then for any Di in G and D′j in G′, ∀Ω ∈ Γ(Di),
∃Ω′ ∈ Γ(D′j) such that Ω = Ω′; and vice visa. It is easy to see that ρ = ρ′,
hDi

= hD′
j

and L = L′ for G and G′, respectively. Then:

∀i, j ∈ N, si(G) = H
≤hDi

−ρ
i = H ′

≤hD′
i
−ρ′

j = sj(G
′).

In this case, we have

A(G) = Cn(
n⋃
i=1

si(G)) = Cn(
n⋃
j=1

sj(G
′)) = A(G′).

2

5. Experimental Analysis

In the previous section, we theoretically study the properties of the bar-
gaining solution. Now in this section, we will carry out an experimental
study and further reveal some insights into our model. More specifically, we
conduct several experiments to see how our model works and how good our
solution concept is. In each experiment, we do 1000 times under the setting
according to the bargaining model (see Definition 2) and bargaining solution
(see Definition 9).

We consider three factors that could influence the solution of a bargain-
ing: (i) the number of the conflicting demands in a bargaining game, (ii) the
risk attitude of the bargainers, and (iii) the number of the bargainers. Fur-
thermore, for each factor, we will evaluate our model against three different
criteria:

(i) Bargaining Success-rate. It is the percetage of the bargaining games
in which an agreement is successfully reached at the end. As we have
defined in Definition 3, no agreements can be reached at the end of the
bargaining if there is at least one bargainer who has nothing to give up.
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(ii) Bargaining Efficiency. It reflects how many steps the bargainers need
to reach an agreement. So, it can be measured by the averaging number
of the rounds in all the games in which the bargainers have to make
concessions by giving up their least preferred demands.

(iii) Agreement quality. It can be indicated by the averaging number of
the demands in the agreements after bargainings. Intuitively, the more
demands are remained in the agreement at the end of a bargaining, the
more the bargainers will be satisfied with the agreement, i.e., the higher
the agreement quality is.

5.1. The Number of Conflicting Demands

According to the bargaining solution in Definition 9, we can see that
the conflicting demands play the main role in determining the final agree-
ment among bargainers. Therefore, we should investigate how the result of
the bargaining changes with the number of the conflicting demands. More
specifically, we conduct the experiments between two bargainers with two
integrity constraints, and for each bargainer, we randomly set 14 demands
in different preference levels.

The experimental results are shown in Fig. 1. From Figs. 1(a) and (b),
we can see that when the conflicting demands are increasing, the bargaining
success-rate and the demands remained in the agreement of the bargaining
both decrease. However, the declining rate of the agreement quality is more
slowly compared with that of the bargaining success-rate. Thus, we can
conclude that the number of the conflicting demands has a greater impact
upon the bargaining success-rate than on the agreement quality. In addition,
Fig. 1(c) reveals that the more conflicting demands in the bargaining, the
more concessions the bargainers have to make in order to reach an agreement.

5.2. Risk Attitude

A bargainer’s risk attitude reflects his risk posture and determines his bar-
gaining power. In the game-theoretic model of bargaining [20], risk-seeking
bargainers have some advantage over risk-averse ones [24]. In fact, like the
logical framework of bargaining in [30, 33], in our model the bargainers’
attitudes towards risk are specified in the following way: a risk-averse bar-
gainer would give lower priorities to the demands that likely conflict with
the demands of the other bargainers and the integrity constraints so that an
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Figure 1: The bargaining success-rate and efficiency as well as the agreement quality
change with the number of the conflicting demands, respectively.
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Figure 3: Bargaining efficiency

agreement is more likely to be reached; in contrast, a risk-seeking bargainer
would put the conflict demands in higher hierarchies.

This subsection will study how the risk attitudes of the bargainers impact
upon the bargaining solutions. To this end, we set up the experiments sim-
ilar to the above experiments, but consider the two bargainers in the three
combination types: (i) both are risk-seeking, (ii) one is risk-seeking and the
other is risk-averse, and (iii) both are risk-averse.

From Fig. 2, we can see that no matter how many conflicting demands
in the beginning of each bargaining, the success-rate of the bargaining games
with both risk-seeking bargainers is much lower than that in the bargaining
games with risk-averse bargainers (both are risk-averse or one of the bar-
gainer is risk-averse). This result is consistent with our intuition because the
risk-averse bargainers will choose to give up the demands that more likely
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Figure 4: Agreement quality

contradict other bargainers’ demands in earlier stages of the bargaining, and
therefore the probability of reaching an agreement will increase.

From Fig. 3, we can see that no matter how many conflicting demands
in the bargaining, the bargainers need to bargain for averagely more rounds
to reach an agreementthe if some of them are risk-seeking. Moreover, the
efficiency of the bargaining with both risk-averse bargainers is the highest.
It means that the bargaining with risk-averse bargainers runs more efficiently.

From Fig. 4, we can observe that the remaining demands in the agreement
for the bargaining game with risk-averse bargainers are more than that for
the bargaining game with risk-seeking bargainers, i.e., the quality of the
bargaining with risk-averse bargainers is higher than that of the bargaining
with risk-seeking bargainers. This result is also reasonable. In fact, the
number of the total demands and the number of the conflicting demands
are both fixed, the risk-averse bargainers will put the conflicting demands in
the lower preference levels, and then in the earlier stage of the bargaining,
the conflicting demands will be removed by concessions of both bargainers.
As a result, as many consistent demands as possible will be retained in the
agreement. If the bargainers are risk-seeking, they will put the conflicting
but desired demands in higher preference levels. This is because bargainers
make concessions by giving up their least preferred demands, and thus some
inconsistent demands will be removed by other bargainers in earlier stages
of the bargaining. Of course, there is a risk: the bargaining will be broken
down if the other side also thinks similarly.
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Figure 5: The bargaining success-rate and efficiency as well as the agreement quality
change with the number of the bargainers, respectively.
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5.3. The Number of Bargainers

In this subsection, we will experimentally reveal how the number of the
bargainers impacts upon the bargaining solution when other factors of the
bargaining remain unchanged. In the following experiment, we randomly
generate 10 demands in different preference levels for M bargainer (chang-
ing from 2 to 10), and randomly select 4 of them as the conflicting ones
for all bargainers. In addition, we generate 2 integrity constraints for each
bargaining game.

The experimental results are shown in Fig. 5. From Figs. 5(a) and (b),
we can see that the bargaining success-rate and the number of the demands
in the agreement decreases when the number of the bargainers increases.
And from Fig. 5(c), we can see that the average round needed to reach an
agreement in the bargaining increases with the number of the bargainers in
the bargaining. These results indicate that if other factors of the bargaining
are fixed, the more bargainers in the bargaining, the harder for them to reach
an agreement, and the more concession they have to make in order to reach
an agreement. In addition, the agreement quality decreases with the increase
of the number of the bargainers.

The properties revealed in this section are obvious intuitively. So, by
these experiments we can conclude that our model is consistent with human
intuitions very well. In other words, our model is effective snd valid.

6. Related Work

The investigation of the bargaining theory diverges into two directions:
numerical models and ordinal models. In Nash’s seminal paper [20], he de-
fined a numerical model for the bargaining situation, proposed a set of axioms
that he thought a solution should satisfy, and established the existence of a
unique solution satisfying all the axioms. Nowadays numerical bargaining
models have been studying extensively. For example, in [9] a tree structure
for the bargaining process is proposed, the fixed point of the bargaining sys-
tem is studied, and various desirable properties for the solution concept are
also analysed.

However, in many real-world bargaining situations, it is very difficult to
measure the utility of a bargainer using a numerical scale. Thus, an ordinal
bargaining model was proposed by Sapley and Shubik in [25]. They model a
bargaining situation in terms of bargainers’ preference orderings over possible
agreements. From then on, more logic frameworks for bargaining problems
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have been proposed. Here are some examples. Booth [5] proposed a ne-
gotiation model based on multi-agent belief contraction. Zhang et al. [32]
introduced the idea of modelling negotiation as a process of mutual belief
revision. Meyer et al. [19] discussed the logical properties of the negotiation
model based on AGM theory [3]. Chen et al. [6] propose a bargaining proce-
dure to demonstrate how two agents reach an agreement through abductive
reasoning. Vo and Li [26] build a logical bargaining model, in which bargain-
ers’ beliefs about the bargaining situation is described in propositional logic
language and the preference over outcomes is ordinal. Their main contribu-
tion is a set of axioms by which the proposed solution can uniquely identified.
Another remarkable feature of this model is that their bargaining model in-
tegrates concession and argumentation together. Zhan et al. [29, 28, 27]
propose a kind of logical bargaining modelS, in which bargainers can change
their demand preferences during a bargaining to increase the chance to reach
an agreement and use fuzzy rules to calculate the degrees to which a bar-
gainer should change his preference during a bargaining. However, all the
logical frameworks mentioned above are constructed without considering the
domain constraints in the bargaining, which is studied in our paper.

In the field of automated negotiation, lots of models put constraints into
consideration [18], but they are quite different from our work in this paper.
For example, the differences between our work and a typical constraint based
negotiation model proposed by Luo et al. in [17] are: (i) theirs just negotiates
for a single demand, while ours bargains for multiple demands; (ii) their de-
mand is specified a value assigment to all the attributes of the demand (i.e.,
a product), while our demand is specified by a set of logic proposition for-
mulas; and (iii) they did not prove their solution can be uniquely charactised
by a set of properties (i.e., axioms), while we did in this work.

In particular, our work in this paper has extended Zhang’s work [30] in
several aspects.

• Our model solves the problem of incorporating integrity constraints
with bargainers’ demands. In Zhang’s model [30], a demand of a bar-
gainer can be everything that is related to the bargaining and that
the bargainers wants to keep in the final agreement. They do not
distinguish the desired constraints or commonsense from the real de-
mands. However, our model is more intuitive because it contains the
integrity constraints, which are the specifying domain constraints in
the bargaining. So, in our model the solution to a bargaining game
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is constructed based on the hierarchies of demand structures under in-
tegrity constraints, while in Zhang’s model the solution to a bargaining
game is constructed based on the demand structures only.

• We add a logical requirement for the preference ordering over the bar-
gainers’ demands to ensure that the preference ordering is rational
under a set of integrity constraints. Rather, in Zhang’s model, the
preference ordering just is subjective.

• Most importantly, in real-life bargaining, the solution usually does not
rely on the syntax of the description. However, this cannot hold in
Zhang’s system, while it is the case in our model as we prove the
equivalence property (see Theorem 2). In this case, even the bargainers
describe their demands in different forms, the solutions will be the same
as long as their desires are essentially the same.

As one of the frameworks for conflicting resolution with integrity con-
straints, this work also has a close relationship with models of belief merging
or database merging with constraints [16, 13]. Following Lin and Mendelzon’s
work [16] on database merging, Konieczny and Pérez extended the framework
of belief merging [14] by adding integrity constraints, which leaded to a new
framework of belief merging [13]. Since both bargaining and belief merg-
ing require to incorporate information from different sources and thus share
some similar properties, for instance, the integrity constraints should be con-
sistent with the outcomes of bargaining or merging. However, the ways of
handling information sources are totally different between a merging model
and a bargaining model. In merging, the information sources are passive;
while in a bargaining, bargainers are initiative, i.e., they can choose different
strategies in order to benefit more from the bargaining. In belief merging,
sometimes whether an item should be included in the merging outcome re-
lies on how many sources contain this item by the majority rule; while in
bargaining, the outcome of a bargaining relies on how firmly the bargainers
insist on their demands. In addition, with belief merging, each data source
normally does not have a preference over the items in the belief base; while
in bargaining, bargainers’ preferences over their demands are essential. All
these differences have been reflected in the frameworks of belief merging and
logical based bargaining.

In game theory, on the one hand, some investigations deal with con-
straints, but they are not about bargaining games. For example, Zhang et al.
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[34] study how constraints influence the outcomes of static games rather than
bargaining games. On the other hand, some bargaining games are based on
logic, but have not put constraints into considerations. For example, Dunne
et al. [7] introduced a bargaining protocol for Boolean games [10, 2]. In a
Boolean game, each player has a goal that is represented by a logic formula
and each strategy of a player is an action variable which is a component of
its goal and others’ goals. However, in their model, no constraints are in-
volved and even if we view each player’s goal as his demand, it is just like
a single demand bargaining model; while ours is a multi-demand bargaing
model with constraints.

7. Conclusions

In this paper, we propose a logical model for multi-demand bargaining
with integrity constraints and introduce a solution conception to the games
of this kind, called a simultaneous concession solution, which satisfies five
logical properties and two game theoretical properties. Moreover, we prove
that our solution can be characterised uniquely by the five logical properties.
In addition, we have done lots experiments to analyse how the number of con-
flicting demands, bargainers’ risk attitude, and bargainer number influence
the bargaining success-rate and efficiency as well as the agreement quality. In
the future, except simultaneous concession, other bargaining protocols (e.g.,
various concession strategies in [21]) can be integrated into our logical model
of bargaining. Also it is interesting to reveal more game theoretic properties
in our logical model of bargaining games.
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