
Using GDL to Represent Domain Knowledge for
Automated Negotiations

Dave de Jonge
Western Sydney University

Sydney, New South Wales, Australia
d.dejonge@westernsydney.edu.au

Dongmo Zhang
Western Sydney University

Sydney, New South Wales, Australia
d.zhang@westernsydney.edu.au

ABSTRACT
Current negotiation algorithms often assume that utility has
an explicit representation as a function over the set of pos-
sible deals and that for any deal its utility value can be
calculated easily. We argue however, that a more realistic
model of negotiations would be one in which the negotiator
has certain knowledge about the domain and must reason
with this knowledge in order to determine the value of a
deal, which is time-consuming. We propose to use Game
Description Language to model such negotiation scenarios,
because this may enable us to apply existing techniques from
General Game Playing to implement domain-independent,
reasoning, negotiation algorithms.

Keywords
Automated Negotiation; General Game Playing; Game De-
scription Language

1. INTRODUCTION
Most work on Automated Negotiations focuses purely on

the strategy to determine which deals to propose given the
utility values of the possible deals. Little attention has been
given to negotiation settings in which determining the utility
value of a deal is itself a hard problem that takes a substan-
tial amount of time. One often assumes the utility value
of any deal is known instantaneously, or can be determined
by solving a simple linear equation [1]. In such studies the
process of evaluating the proposal is almost completely ab-
stracted away and one either assumes that the negotiation
algorithms do not require any domain knowledge or reason-
ing at all, or that all such knowledge is hardcoded in the
algorithm. The preferences of the agent’s opponents on the
other hand, are often assumed to be completely unknown.

In this paper however, we argue that in real negotiations
it is very important to have domain knowledge, and a good
negotiator must be able to reason about this knowledge. One
cannot, for example, expect to make profitable deals in the
antique business if one does not have extensive knowledge of

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

antique, no matter how good one is at bargaining. Moreover,
a good negotiator should also be able to reason about the
desires of its opponents. A good car salesman for example
would try to find out what type of car would best suit his
client’s needs, in order to increase the chances of coming to
a successful deal.

We therefore propose a new kind of negotiation setting in
which the agents do not have an explicit representation of
their utility functions but instead are presented with domain
knowledge in the form of a logic program. Agents will need
to apply logical reasoning in order to determine the value of
any proposal.

Another point that is rarely taken into account, is that an
agent’s utility may not always solely depend on the agree-
ments it makes, but may also depend on decisions taken
outside the negotiation thread. For example, suppose that
you negotiate with a car salesman to buy a car. If you are
single and you live in the city then it may be a very good
deal to buy a small car which is easy to park and uses little
fuel. However, if one year later you get married and decide
to start a family, that deal suddenly is not so good anymore
because you now require a larger family car. Interestingly,
we see that although the deal itself has not changed at all,
its utility value certainly has changed as a consequence of
some decision taken long after the negotiations had finished.

Moreover, an agent’s utility may not only depend on its
own actions, but also on actions of other agents, as is typical
for business deals. Imagine for example renting a property
to open a restaurant in a street with no other restaurants.
This might be a good deal until suddenly five other restau-
rants also open in that same street, giving you so much
competition that you can no longer afford the rent.

We note that these properties we are addressing here–
applying logical reasoning about the domain, and choosing
a proper strategy with respect to your opponents’ strategies–
are also the main issues in the field of General Game Playing
(GGP). General Game Playing deals with the implementa-
tion of agents that can play any kind of game. In contrast
to specialized Chess- or Go- computers, which can only play
one specific game and are largely based on knowledge pro-
vided by human experts, a GGP program cannot apply any
game-specific heuristics because it only knows the rules of
the games it is playing at run-time.

Therefore, in this paper we propose to use Game Descrip-
tion Language (GDL), which is commonly regarded as the
standard language for GGP research [18], to define negoti-
ation domains and we propose to use common techniques
from GGP to implement negotiating agents. We investigate

to what extent GDL is applicable to the field of automated
negotiations and compare its advantages and disadvantages.
We conclude that describing negotiation domains in GDL is
indeed possible, but that some small adaptations may need
to be made to GDL to make it more suitable for negotia-
tions.

Another advantage of using GDL for negotiations, is that
it allows us to write protocol-independent agents. Currently,
negotiating agents are often implemented for only one spe-
cific protocol. By applying GGP techniques we could be
able to implement an agent that “understands” any kind of
protocol as long as it is specified in GDL. So far we have
indeed managed to specify the Alternating Offers protocol
in GDL.

The rest of this paper is organized as follows. In Section
2 we give an overview of existing work in Automated Nego-
tiations and General Game Playing. In Section 3 we explain
how we can model a negotiation scenario as a game. In Sec-
tion 4 we give a short description of GDL and in Section
5 we explain that for negotiation games specified in GDL
we can distinguish between three types of agents. Then,
in Section 6 we give a short description of a recently intro-
duced language for strategic reasoning that can be used by
negotiating agents to make proposals to each other. Next,
in Section 7 we discuss some of the issues we encountered
when applying GDL to negotiations. In Section 8 we present
some preliminary results that we have so far obtained, and
finally, in Section 9, we summarize our conclusions.

2. RELATED WORK
The earliest work on automated negotiations was mainly

focused on highly idealized scenarios in which it is possible
to formally prove certain theoretical properties, such as the
existence of equilibrium strategies. A seminal paper in this
area is the paper by Nash [21] in which he shows that under
certain axioms the outcome of a bilateral negotiation is the
solution that maximizes the product of the players’ utilities.
Many papers have been written afterwards that generalize
or adapt some of his assumptions. A non-linear generaliza-
tion has been made for example in [9]. Such studies give
hard guarantees about the success of their approach, but
the downside is that it is difficult to apply those results in
real-world settings, since many of the assumptions made do
not hold in the real world. A general overview of such game
theoretical studies is made in [25].

In later work focus has shifted more towards heuristic ap-
proaches. Such work focuses on the implementation of ne-
gotiation algorithms for domains where one cannot expect
to find any formal equilibrium results, or where such equi-
libria cannot be determined in a reasonable amount of time.
It is usually not possible to give hard guarantees about the
success of such algorithms, but they are more suitable to
real-world negotiation scenarios. Important examples in this
area are [7], and [8]. They propose a strategy that amounts
to determining for each time t which utility value should be
demanded from the opponent (the aspiration level). How-
ever, they do not take into account that one first needs to
find a deal that indeed yields that aspired utility level. They
simply assume that such a deal always exists, and that the
negotiator can find it without any effort.

In general, these heuristic approaches still often make
many simplifying assumptions. They may for example as-
sume there is only a small set of possible agreements, or that

the utility functions are linear additive functions which are
explicitly given or which can be calculated without much
computational cost. All these assumptions were made for
example in the first four editions of the annual Automated
Negotiating Agent Competition (ANAC 2010-2013) [1].

Recently, more attention has been given to more realistic
negotiation settings in which the number of possible deals
is very large so that one needs to apply search algorithms
to find good deals to propose, and where utility functions
are non-linear, for example in [19, 14, 20]. Although their
utility functions are indeed non-linear over the vector space
that represents the space of possible deals, the value of any
given deal can still be calculated quickly by solving a linear
equation. Even though in theory any non-linear function can
indeed be modeled in such a way, in real-world settings util-
ity functions are not always given in this way (e.g. there is
no known closed-form expression for the utility function over
the set of all possible configurations of a Chess game). In or-
der to apply their method one would first need to transform
the given expression of the utility function into the expres-
sion required by their model, which may easily turn out to
be an unfeasible task.

Therefore, the idea of complex utility functions was taken
a step further in [4], where the utility functions were not
only non-linear, but determining the value of any deal was
actually an NP-hard problem. Another important exam-
ple of negotiations where determining utility values involves
a hard combinatorial problem is the game of Diplomacy.
In this game negotiations are even more complex because
the utility values of the players are not directly defined in
terms of the agreements they make, but more indirectly
through the moves they make in the game. The players
negotiate with one another about which moves each will
make, which in turn influences the outcome of the game
in a non-trivial manner. Determining the effect of an agree-
ment on the player’s final utility is a very hard problem that
involves Game Theory and Constraint Satisfaction. Pioneer-
ing work on negotiations in Diplomacy was presented in [23,
17]. New interest in Diplomacy as a test-bed for negotiations
has arisen with the development of the DipGame platform
[6], which makes the implementation of Diplomacy agents
easier for scientific research. Several negotiating agents have
been developed on this platform [10, 5, 3].

General Game Playing is a relatively new topic. Although
earlier work has been done, it really started to draw widespread
attention in the AI community after the introduction of GDL
[18] and the organization of the annual AAAI GGP compe-
tition since 2005 [12].

Common techniques applied by GGP players are minimax
[27], alpha-beta pruning [15] and Monte Carlo Tree Search
(MCTS) [16]. All these techniques generate a search tree
in which each node ν represents a certain state wν of the
game and a certain player αν . The root node represents
the initial state, and for each node the edges to its child
nodes represent the actions that are legal in the state wν ,
for player αν . Each time a new node ν is added to the tree,
the algorithm parses the game rules, which are written in
GDL, to determine which actions are legal for player αν in
the state wν and, if wν is a terminal state, which utility
value each player receives.

FluxPlayer [24], the winner of the 2006 AAAI GGP com-
petition applies an iterated deepening depth-first search method
with alpha-beta pruning, and uses Fuzzy logic to determine

how close a given state is to the goal state. Cadia Player
[11], the winner in 2007, 2008, and 2012, is based on MCTS
extended with several heuristics to guide the playouts so
that they are better informed and hence give more realis-
tic results. Furthermore, also the winner of 2014, Sancho1,
as well as the winner of 2015, Galvanise2 apply variants of
MCTS.

3. NEGOTIATION GAMES
Since GDL is a language to describe games, in this section

we explain how a negotiation scenario can be described as a
game.

Game theory can be related to negotiations in two possi-
ble ways. Firstly, the negotiation protocol can be modeled
as a game. This approach is for example taken in Nash’
famous paper [21] and is the common approach taken when
one intends to formally prove properties of a negotiation sce-
nario. In this case the moves made by the players consist of
making proposals and accepting proposals, and the utility
functions are directly given as a function over the space of
possible outcomes of the negotiation protocol.

However, in this paper we follow a new approach in which
not only the protocol, but also the utility functions are de-
fined by means of a Game Theoretical model. That is: play-
ers receive utility by making certain moves in some game
G, and on top of that they are allowed to negotiate about
the moves they will make in that game according to some
negotiation protocol N . A typical example of such a ne-
gotiation scenario is the game of Diplomacy. In this case
there are two types of moves: negotiation-moves (i.e. mak-
ing proposals, accepting proposals or rejecting proposals)
and game-moves (the moves defined in the game G). The
proposals that players make or accept are proposals about
which game-moves they will make. The utilities of the play-
ers are only determined by the game-moves. However, since
the agreements they make during the negotiations will par-
tially restrict their possible game-moves, the utility values
obtained by the players indirectly do depend on the negoti-
ated agreements.

We will first define the concept of a protocol, and then
define the concepts of a negotiation protocol and of a game,
which are two different extensions of the concept of a pro-
tocol. Next, we will define a negotiation game, which is a
combination of a negotiation protocol and a game.

Definition 1. A protocol P is a tuple
〈Ag,A,W,w1, T, L, u〉, where:

• Ag is the set of agents (or players):
Ag = {α1, α2, . . . αn}
• A is a tuple (A1,A2, . . .An) where each Ai is the set

of actions (or moves) of agent αi.
• W is a non-empty set of states.
• w1 ∈W is the initial state.
• T ⊂W is the set of terminal states.
• L is a tuple (L1, L2, . . . Ln), where each Li is the legal-

ity function for αi, which assigns to each non-terminal
state a nonempty set of actions for αi. Li : W \ T → 2Ai .
• u : W ×A1 ×A2 · · · ×An →W is the update function

that maps each state and action profile to a new state.

1http://sanchoggp.blogspot.co.uk/2014/05/
what-is-sancho.html
2https://bitbucket.org/rxe/galvanise v2

We say an action a is a legal action for player αi in state
w iff a ∈ Li(w). A tuple ~a = (a1, a2, . . . an) consisting of
one action ai ∈ Ai for each player is called an action pro-
file. An action profile is called a legal action profile in
state w iff all actions ai of that action-profile are legal in
w. Given a state w and a legal action profile ~a the update
function u defines the next state w′ as: w′ = u(w,~a). A
legal history is a finite sequence of states, (w1, w2, . . . wm),
starting with the initial state w1 such that for each integer
j with 1 ≤ j < m there exists a legal action-profile ~a such
that u(wj ,~a) = wj+1.

Note that in this model it is assumed that the agents al-
ways take their actions simultaneously. This is not really
a restriction because any turn-taking protocol can be mod-
eled as a special case of a simultaneous-move protocol, by
adding a special dummy-move, often called ‘noop’, to the
model which has no effect on the next state. Then, one can
define the legality functions such that in every state all play-
ers except one have only one legal move, which is the ‘noop’
move. The one player that does have more than one legal
move is then called the active player of that state.

Definition 2. A negotiation protocol N is a tuple
〈P,Agr, C, η〉, where:

• P is a protocol.

• Agr is a nonempty set of possible agreements, known
as the agreement space.

• C : T → Agr is the commitment function that maps
every terminal state of the protocol to an agreement.

• η ∈ Agr is the ‘conflict deal’.

The set Agr can be any set that represents the possible deals
the agents can make with each another. The interpretation
of C is that if the negotiation protocol ends in a terminal
state w then C(w) is the agreement that the agents have
agreed upon.3 The set Agr contains one element η that
represents the ‘conflict deal’ i.e. an element to represent
that no deal has been made. So if the agents do not come
to any agreement, than the protocol ends in a final state w
for which C(w) = η.

As an example, let us define the alternating offers protocol
[22] using this model.

Example 1. Suppose we have two agents negotiating how
to split a pie according to an alternating offers protocol over
m rounds. The agents are denoted Ag = {α1, α2}. The
possible agreements are the real values between 0 and 1, rep-
resenting the fraction of the pie assigned to player α1, so:
Agr = [0, 1] ∪ {η}. The actions of the players are either
to propose a division of the pie, or to accept the previous
proposal, or to do nothing:

A1 = A2 = {propose(x) | x ∈ [0, 1]} ∪ {accept, noop}.

A state is given as a triple: (r, x, b) where r is the round of
the protocol, x is the last proposal made, and b is either ‘true’
(>) or ‘false’ (⊥) indicating whether x has been accepted or
not.

W = {(r, x, b) | 0 ≤ r ≤ m, x ∈ Agr, b ∈ {>,⊥}}
3We could generalize this and allow protocols in which more
than one deal can be made. However, we will not do so here
for simplicity.

The initial state is: w1 = (0, η,⊥). Terminal states are
those states in which either the last round has passed or any
of the agents has accepted a proposal:

T = {(r, x, b) ∈W | r = m ∨ b = >}

In the even rounds player α1 is the active player and in the
odd rounds α2 is active. In every state all actions except
‘noop’ are legal for the active player, except that in the ini-
tial state it is also not allowed to play ‘accept’ (because no
proposal has yet been made that could be accepted).
If r = 0:

L1(r, x, b) = A1 \ {accept, noop} L2(r, x, b) = {noop}

If r > 0:

Li(r, x, b) = Ai \ {noop} Lj(r, x, b) = {noop}

with i = r (mod 2) + 1 and j 6= i. The update function is
defined as follows:

u((r, x,⊥), propose(y), noop) = (r + 1, y,⊥)

u((r, x,⊥), noop, propose(y)) = (r + 1, y,⊥)

u((r, x,⊥), accept, noop) = (r + 1, x,>)

u((r, x,⊥), noop, accept) = (r + 1, x,>)

And finally, the commitment function returns the proposal
that was accepted or, if no proposal was accepted, returns
the conflict deal:

C(r, x,>) = x C(m,x,⊥) = η

Note that this definition of the alternating offers protocol
can be adapted easily to domains other that split-the-pie,
simply by replacing Agr by some other agreement space.
Everything else remains the same.

Definition 3. A game G is a pair 〈P,U〉 where P is a
protocol and U is a tuple U = (U1, U2, . . . Un) where each Ui
is the utility function of player αi, which assigns a utility
value to each terminal state of the protocol: Ui : T → R+.

The goal of each player αi is to choose a strategy such that
the game ends in a terminal state wm that maximizes his
or her utility Ui(wm). As an example, let us define the
prisoner’s dilemma using this model.

Example 2. If G is the prisoner’s dilemma then we have
the following protocol (c stands for ‘confess’ and d stands for
‘deny’):

• Ag = {α1, α2}
• A1 = A2 = {c, d}
• W = {w1, wcc, wcd, wdc, wdd}
• T = {wcc, wcd, wdc, wdd}
• L1(w1) = L2(w1) = {c, d}
• u(w1, c, c) = wcc, u(w1, c, d) = wcd,
u(w1, d, c) = wdc, u(w1, d, d) = wdd

Here, w1 is the initial state, wcc is the terminal state that is
reached when both players play c, wcd is the terminal state
that is reached when α1 plays c and α2 plays d, etcetera.
The utility functions can, for example, be defined as:

• U1(wcc) = U2(wcc) = 2
• U1(wcd) = U2(wdc) = 10
• U1(wdc) = U2(wcd) = 0

• U1(wdd) = U2(wdd) = 8

Definition 4. Given a game G, a strategy σ for player
αi is a map that maps every non-terminal state of that game
to a nonempty set of legal moves for that player. Thus, σ is
a map:

σ : W \ T → 2Ai

such that for each w ∈W \T we have σ(w) 6= ∅ and σ(w) ⊆
Li(w). A complete strategy is a strategy such that |σ(w)| =
1 for all w ∈ W \ T , and a partial strategy is a strategy
that is not complete. A tuple (σ1, σ2 . . . σn) consisting of one
strategy for each player is called a strategy profile.

In the following, we use a superscript G or N to indicate
that something is a component of the game G or of the
negotiation protocol N . For example PG is the protocol of
G, and WN is the set of world states of N .

We will next define a negotiation game NG to be a com-
bination of a negotiation protocol N and a game G. The
interpretation of NG is that it is a game that consists of
two stages: a negotiation stage followed by an action stage.
In the action stage the players play the game G, while in
the preceding negotiation stage the players negotiate about
which strategies they will apply during the action stage.
These agreements are considered binding, therefore, if the
players come to an agreement they will have less legal moves
during the action stage than they would have in the pure
game G.

We say a negotiation protocol N is compatible with a
game G if it has the same set of agents as G, and the set of
agreements Agr consists purely of strategy profiles for the
game G. This means that N is designed for the agents of G
to negotiate the strategies they will play in the game G.

Definition 5. A negotiation protocol N is compatible
with a game G, if both of the following hold:

• AgN = AgG.
• If x ∈ AgrN then x is a strategy profile for G.

The interpretation here, is that if the negotiators agree on
some strategy profile (σ1, . . . σn) then each player αi has
promised, for any state w of G, to only choose its action
from σi(w). Specifically, if σi is a complete strategy, then αi
has no more free choice in G, and must play in any state w
the unique action in σi(w). Furthermore, the conflict deal
of AgrN corresponds to the strategy profile in which each
player still has its full set of legal actions to choose from:
σi(w) = Li(w). Indeed, if no agreement is made this means
that no agent is restricted by any commitments and may
therefore choose any legal action in G.

Definition 6. Given a game G and a negotiation proto-
col N compatible with G we define the negotiation game
NG as a game, such that:

• Ag = AgN = AgG

• For each player αi: Ai = ANi ∪ AGi
• The set of states W is a subset of WN ×WG.

More precisely: W = Wnego ∪W act with:

Wnego = WN × {wG1 }
W act = TN ×WG

• The initial state is defined as: w1 = (wN1 , w
G
1).

• The terminal states are defined as: T = TN × TG.
• The update function is defined as:

u((v, z),~a) = (uN (v,~a), z) if (v, z) ∈Wnego

u((v, z),~a) = (v, uG(z,~a)) if (v, z) ∈W act

• The legality functions are defined as:

Li(v, z) = LNi (v) if (v, z) ∈Wnego

Li(v, z) = σi(z) if (v, z) ∈W act

where (σ1, . . . σn) = CN (v)
• The utility functions are defined as:

Ui(v, z) = UGi (z)

Here, we have modeled states w of NG as pairs of states
w = (v, z) consisting of a protocol-state v ∈ WN and a
game-state z ∈ WG. The initial state w1 of NG is simply
the pair of initial states (wN1 , w

G
1) of N and G.

We have divided the state space W into two subspaces:
Wnego and W act, which represent the negotiation stage and
the action stage respectively. Note that the initial state is in
Wnego and that the update and legality functions are defined
such that any legal history starts with a sequence of states
that are all in Wnego, followed by a sequence of states that
are all in be in W act. In other words: the game starts in the
negotiation stage, until at some point it reaches a state in
the action stage, after which the game remains in the action
stage.

During the negotiation stage the update function u only
acts on the protocol-state, and acts on it according to the up-
date function uN of N , while during the action stage u only
acts on the game-state, according to uG. In other words:
during the negotiation stage the game follows the protocol
PN , while during the action stage the game follows the pro-
tocol PG.

Similarly, during the negotiation stage the legality func-
tions Li are simply the legality functions LNi of the negoti-
ation protocol. Therefore, during this stage the agents can
make proposals and accept proposals. During the action
stage the legality function of an agent αi allows it only to
take those actions it was committed to during the negoti-
ation stage. Note that indeed, if (v, z) ∈ W act then v is
a terminal state of N , and therefore CN (v) is some agree-
ment from the agreement space AgrN of N . Furthermore,
since N is compatible with G, we know that CN (v) is a
strategy profile of G. In other words: if during the negotia-
tion stage the agents have agreed to on the strategy profile
CN (v) = (σ1, . . . σn) then during the action stage each agent
αi is committed to play according to the strategy σi.

Example 3. If G is the Prisoner’s Dilemma, and N is
the alternating offers protocol compatible with G, then the
Negotiating Prisoner’s Dilemma NG begins with a ne-
gotiation stage in which the prisoners may negotiate which
strategies they will play. The prisoners may propose any
strategy-pair (σ1, σ2). Since there is only one non-terminal
state in the Prisoner’s Dilemma, a strategy is defined by its
value σi(w

G
1) on that non-terminal state wG1 . That is, σi can

be either σi(w
G
1) = {c} or σi(w

G
1) = {d} or σi(w

G
1) = {c, d}.

If the prisoners are rational, then one of them will propose
the strategy profile ({d}, {d}) and the other will accept that
proposal. In the action stage they are then both committed
to play the action d.

Note that this example, in which the players agree to play
({d}, {d}), is in fact a subgame perfect equilibrium of the Ne-
gotiating Prisoner’s Dilemma.4 This is interesting, because
the outcome strictly dominates the outcome (c, c) which
is the Nash-equilibrium of the pure Prisoner’s Dilemma.
Therefore, in a sense, we can say that we have ‘solved’ the
Prisoner’s Dilemma by giving the players the opportunity to
negotiate and make binding agreements about their actions.

Finally, we would like to remark that in the definition of
a Negotiation Game as presented in this section the play-
ers only have one opportunity to negotiate, before they play
the game G. However, we could also consider more general
models in which, for example, the players have a new op-
portunity to negotiate before each new turn of the game G.
We will not do this however, to keep the discussion simple.

4. GAME DESCRIPTION LANGUAGE
In this section we will give a short introduction to GDL.

For more details we refer to [13].
GDL is logical language that was designed to describe

games. In principle, it can describe any game G defined
according to Definitions 1 and 3. GDL is similar to Data-
log [2], but it defines the following relation symbols:5 init,
true, next, legal, goal, terminal, does, which have a special
meaning related to games.

In GDL a state w of a game is represented as a set of
atomic formulas, which we will here denote as V (w). These
atoms are all of the form true(p), where p can be any ground
term. For example, in Tic-Tac-Toe the state in which the
the center cell contains the marker X and the left upper cell
contains the marker O could be represented as:

V (w) = { true(cell(2, 2, X)) , true(cell(1, 1, O)) }

A GDL rule is an expression of the following form:

s1 ∧ s2 ∧ . . . sn → h

where each si is a positive or negative literal, and h is a
positive literal. The atom h is called the head of the rule and
the si’s are called the subgoals of the rule. The conjunction
of subgoals is called the body of the rule. The body of a rule
may be the empty conjunction, in which case the rule is also
referred to as a fact, which we denote as → h.

A game description is then nothing more then a set of
GDL rules. For example, if the game description contains
the following rule:

true(p) ∧ does(αi, a)→ next(q)

it means that if the game is in a state w for which true(p) ∈
V (w) and player αi plays action a then in the next round
the game will be in a state w′ for which true(q) ∈ V (w′)
holds. Similarly:

true(p)→ terminal

means that any state w for which true(p) ∈ V (w) holds is a
terminal state. The fact

→ init(p)

4We should stress here that we have assumed agreements
are binding. Without this assumption this statement would
not be true.
5GDL defines more relations, but these are not relevant for
this paper.

means that for the initial state w1 we have true(p) ∈ V (w1).
The rule

true(p)→ legal(αi, a)

means that for any state in which true(p) ∈ V (w) holds it
is legal for player αi to play the move a.

true(p)→ goal(αi, 100)

means that in any state w for which true(p) ∈ V (w) holds
αi receives a utility value of 100.

GDL uses what is known as negation-by-failure. This
means that a negative literal ¬p is considered true if and
only if there is no rule from which one can derive the truth of
p. GDL can only describe games of full information without
randomness. However, an extension to GDL exists, called
GDL-II [26] which does allow for randomness and private
information.

The Game Manager is a server application specially de-
signed for General Game Playing. It allows you to start a
game with a game description written in GDL, and allows
game playing agents to connect and start playing. Once con-
nected, the server sends the game description to the players.
The players then need to parse the description and deter-
mine for themselves which moves they can make, and what
the consequences are. Every round, each player is supposed
to send a message back with the move it desires to play. If
a player fails to send this message, or if it chooses an action
that is illegal in the current state, the server will instead
pick a random move for that player. Next, the server sends
a message back to all players, informing each player which
moves have been made by the other players. From this in-
formation the players can then compute the next state, and
determine which moves they can make in that new state.
This continues until a terminal state is reached.

5. GENERAL NEGOTIATION GAMES
Not only does GDL allow us to define complex negotiation

games, it also allows us to write domain-independent nego-
tiation algorithms. With this we mean that the agents do
reason about the domain, but they only receive information
about the domain at run-time, just like in GGP.

We can now distinguish between three types of agents:

• Completely generic agents: agents that are able to
interpret any negotiation protocol N and any game G
provided at run-time, as long as they are specified in
GDL.

• Protocol-specific agents: agents that are designed
only for one specific negotiation protocol N , but that
can interpret any game G provided at run-time, as long
as it is specified in GDL.

• Game-specific agents: agents that are able to inter-
pret any negotiation protocol N provided at run-time,
as long as it is specified in GDL, but that are designed
only for one specific game G.

Agents that are completely generic are essentially just GGP
agents. Since they can handle any negotiation protocol N
and any game G they can handle in principle anything spec-
ified in GDL, including games that have nothing to do with
negotiations. This, however, also means that when such an
agent is playing a negotiation game, it is very hard (if not
impossible) for this agent to exploit that fact, and be better

at negotiating than any standard GGP algorithm. There-
fore, we think that this kind of agent is less interesting for
Automated Negotiations research.

We think that protocol-specific agents are more interest-
ing. Such an agent is less generic than a GGP player, but it
has the advantage that when implementing it we may incor-
porate algorithms specific for negotiations. In order to assess
the values of the proposals it negotiates it would need to ap-
ply advanced reasoning algorithms for GGP, which makes
it more interesting than the agents developed for classical
negotiation domains.

Another interesting option is to implement game-specific
agents. This would allow us to do research on negotiation
algorithms that are independent of the negotiation protocol.

6. A LANGUAGE TO DEFINE STRATEGIES
As explained, the proposals made during the negotiation

stage of a Negotiation Game are in fact strategy profiles.
For example, in the Negotiating Prisoner’s Dilemma, player
α1 may propose:

(σ1, σ2) = ({c, d}, {d})

Here, σ1 is the partial strategy in which player α1 has the
choice to play either c or d, and σ2 is the strategy in which
α2 plays d (of course this is a highly unprofitable deal for
α2 so if α2 is rational he or she will not accept it).

In the case of the Prisoner’s Dilemma a strategy can be
represented simply as the set of possible actions in the only
non-terminal state. However, in other games, such as Diplo-
macy, the number of possible actions and states can be ex-
tremely large. Therefore, expressing a strategy explicitly as
a set of actions for every non-terminal state in such games
is infeasible.

Instead, we propose to use Strategic Game Logic: a re-
cently introduced logical language specifically defined to de-
scribe game-strategies. SGL is in fact an extension of GDL.
While GDL is used to describe the rules of a game, SGL can
be used to describe strategies of a game. We will here only
briefly discuss the basic ideas. For a detailed description we
refer to [28].

A logical formula φ in SGL may represent a set of states,
or a set of state-action pairs. For example: φ = true(p) ∧
true(q) would represent the set of states:

{w ∈W | true(p) ∈ V (w) and true(q) ∈W}

while φ = true(p)∧does(a) represents the set of state-action
pairs:

{(w, a) ∈W × {a} | true(p) ∈ V (w)}
We say that w satisfies φ if w is in the set of states repre-
sented by φ, and we say that (w, a) satisfies φ if (w, a) is in
the set of state-action pairs represented by φ.

Note that a set S of state-action pairs can be seen as a
strategy, defined by a ∈ σi(w) iff (w, a) ∈ S. Therefore,
negotiators may make proposals of the form propose(φ1, φ2)
where φ1 is an SGL formula that represents a strategy for
player α1 and φ2 is an SGL formula that represents a strat-
egy for player α2.

SGL defines a number of new operators on top of GDL.
That is, if a is an action and φ and ϕ are formulas, then
SGL defines the following expressions: [a]φ, �a�φ, and HϕIφ.

Let φ be any formula representing a set of states, and a
be any action. If w satisfies φ, then by definition u(a,w)

satisfies [a]φ. That is: [a]φ represents the set of states that
result from the action a being played in a state that is repre-
sented by φ. Furthermore, w satisfies φ if and only if (w, a)
satisfies �a�φ.

For the last operator we have that HϕIφ is satisfied only if
φ is satisfied under a new protocol where the legality relation
of the original protocol is replaced by the strategy ϕ. For
example, suppose that we have a state w in which it is legal
for player αi to play either action a or action b. Then the
formulas φ1 = legal(αi, a) and φ2 = legal(αi, b) are both
satisfied by w. Furthermore, let ϕ be a strategy in which
αi plays action b in state w. Then we have that w satisfies
HϕIφ2, but not HϕIφ1.

Using these new operators SGL defines two more oper-
ators that allow to combine any two strategies into a new
strategy. Firstly, SGL defines prioritized disjunction:

φ> ϕ = φ ∨ (ϕ ∧
∧
c∈Ai

�c�¬φ)

which has the interpretation of “play strategy φ if applicable,
otherwise play strategy ϕ”. Secondly, SGL defines prioritized
conjunction:

φ? ϕ = φ ∧ ((
∨
c∈Ai

�c�(φ ∧ ϕ))→ ϕ)

Which is a strategy with the interpretation: “apply both φ
and ϕ if both are applicable; otherwise, apply φ only”.

7. APPLYING GDL TO NEGOTIATIONS
In this section we will discuss some technical issues that we

encountered when using GDL to describe negotiation games.

7.1 Enforcement of Commitments
One problem we need to take care of is the question how

to enforce that agents obey their agreements. Although in
some domains (such as Diplomacy) there simply is no mech-
anism at all to force agents to obey agreements, in many ex-
isting domains one does require agreements to be enforced.
We suggest two possible solutions.

The first option would be to write a game description that
includes all rules for the negotiation protocol N , the game
G and all rules necessary to guarantee agreement obedience.
That is, they would contain rules of the form “If players α1

and α2 make the agreement that α1 will play action a1 and
α2 will play action a2, then those actions will be the only
legal actions”. For example, if the original game G contains
the rule

true(p)→ legal(αi, a)

then the negotiation game NG would instead contain the
rules:

committed(αi, a) ∧ a 6= b→ excluded(αi, b)

true(p) ∧ ¬excluded(αi, a)→ legal(αi, a)

where the first rule specifies that whenever a player gets
committed to an action a, then all other actions are ex-
cluded. The second rule is an adaptation of the original rule,
with the extra premise added that an action a can only be
legal if it has not been excluded by the commitments.

The second option would be to write a new game server
that forbids the players to make moves that are incompatible
with their agreements. In that case we see the negotiation

protocol N and the game G as two separate games with
each its own game description. If a player gets committed
to action a but tries to play the action b the server will not
allow it, even though b is legal according to the rules of the
pure game G.

The advantage of the first option is that it is completely
compatible with existing GGP standards. A negotiation
game NG is just another game that can be described in
GDL. Any existing GGP player should therefore be able to
participate in such a negotiation game. However, the prob-
lem is that one would need to write rules that take all pos-
sible commitments into account. After all, a commitment
may not simply be a single action, as in this example, but
could be a disjunction of actions, or it could be conditional
(e.g. if you play a I will play b in the next round, or if you
play b then I will play a). It would be very complicated
to write rules that are generic enough to cover all possible
commitments, especially if we allow the full SGL language
to specify agreements. Furthermore, it seems rather redun-
dant to explicitly write rules to enforce commitments, if it
is obvious that agreements must be obeyed.

We therefore think it might be more practical to choose
the second option and implement a special General Nego-
tiation server that handles rule enforcement. Moreover, it
also has the advantage that it would allow us to re-use any
existing game specification and freely combine it with any
negotiation protocol specified in GDL. There is no need to
adapt the rules of the game.

7.2 Very Large Spaces
Currently, many GGP algorithms are not able to handle

domains where the number of possible actions is very large.
The reason is that they apply grounding : they try to gen-
erate a list that explicitly contains all possible actions. Of
course, if there are millions of possible proposals such as in
the domain of the ANAC 2014 competition, this approach
will not work.

However, we have managed to implement a GDL specifi-
cation of a domain like in ANAC 2014, where we avoid this
problem with a little trick. In this domain the negotiators
propose contracts that consist of 10 properties, and each
property can have 10 different values, so that there are 1010

possible contracts.
Instead of mapping each possible proposal to an action,

we have written the description such that making a proposal
requires making several actions. More precisely: apart from
the three standard types of action: ‘propose’, ‘accept’ and
‘noop’ from Example 1, we have added a fourth action called
‘setValue’. The setValue action takes two parameters: a
property-index and a value. By playing a number of setValue
actions the player creates a contract, in which the indicated
properties have the indicated values. For example, if an
agent plays the following three actions:

setV alue(1, 5), setV alue(2, 9), setV alue(4, 2)

it creates a contract in which the first property has value
5, the second property has value 9 and the fourth property
has value 2. All other properties will by default have value
0. Then, after generating the contract the negotiator can
propose it by playing the action ‘propose’. In this way there
are only 103 possible actions, instead of 1010.

7.3 Continuous Time
In GDL it is assumed that games take place over discrete

rounds. The duration of each round can be specified in the
server. However, in negotiations it is not uncommon to as-
sume that negotiations take place in continuous time. In
the ANAC 2014 domain for example, although the agents
did take turns, each agent could take as much time as it
wanted to make a proposal. In principle, this is not a prob-
lem, because we can simple allow agents to make a ‘noop’
move representing the ‘action’ of not making an action, and
make sure that the other agent only gets the turn after the
first agent makes a proposal.

There is however a small technical problem with this,
namely that each agent must take care that it indeed submits
the ‘noop’ action before the deadline of the round passes. If
it does not manage to do this in time (for example because
it is doing heavy calculations that take up all its resources)
then the server will automatically pick a random action for
that agent. Of course, this is undesirable because the server
may choose a highly unprofitable proposal which may then
be accepted by the opponent.

We think that, in the context of negotiations in continuous
time, it would be better to have a server that by default picks
the ‘noop’ move if you fail to play any action within the time
limits.

7.4 Hidden Utilities
In GDL it is not possible to specify games with hidden in-

formation. This means that you cannot only determine your
own utility values, but also your opponents’ utility values.
This is fine for most games, but in the field of Automated
Negotiations it is often assumed that utility values are hid-
den.

Again, in order to solve this problem we could write an
alternative game server that does not send information to
the players about their opponents’ utility functions, or al-
ternatively we might use GDL-II to keep information about
utility functions hidden.

Another option, is to simply re-interpret the semantics of
GDL. That is, we could interpret the goal-values specified
in the game descriptions not as utility values, but rather as
values that only indicate a preference order. For example,
suppose we have the following two rules:

true(p) → goal(α1, 100)

true(q) → goal(α1, 50)

The classical interpretation of this is the following: “if p is
true, then α1 receives a utility of 100, and if q is true then
α1 receives a utility of 50.” However, we could re-interpret
this as only meaning the following: “α1 prefers states in
which p is true over states in which q is true”. In this second
interpretation the values 50 and 100 do not really have any
meaning any more. They only serve to establish an ordering
between terminal states, while the true utility values remain
private information.

8. RESULTS
We have managed to specify the Negotiating Prisoner’s

Dilemma of Example 3 in GDL, in which the negotiation
stage was modeled as a turn-taking protocol with three rounds
in which prisoner 1 is first allowed to make a proposal, next
prisoner 2 is allowed to either accept that proposal or make

a counter proposal, and finally prisoner 1 may accept the
last proposal made by prisoner 2.

We have implemented a straightforward minimax algo-
rithm for GGP, and when we let two instances of this algo-
rithm play the Negotiating Prisoner’s Dilemma they indeed
successfully negotiate and agree to both play ‘deny’. This is
very interesting, because this algorithm is not a negotiation
algorithm. It is simply a general game-playing algorithm
that may just as well play Tic-Tac-Toe or any other simple
game. The reason that it is able to negotiate successfully is
that the negotiation scenario was described in GDL.

Moreover, we have implemented a domain similar to ANAC
2014 in which the agents negotiate according to the alternat-
ing offers protocol over a space with 1010 possible contracts.
Since this is a very large domain over many rounds a naive
minimax does not work. To be able to handle such domains
we need to apply more state-of-the-art GGP techniques. We
leave this as future work. Also it would be interesting to see
whether any of the top existing GGP players is able to han-
dle this domain.

9. CONCLUSIONS
We conclude that GDL is in essence a good option for

the description of general negotiation scenarios because it
allows us to write complex negotiation domains that require
reasoning and logic, and for which assessing the value of a
proposal requires thinking ahead about your future actions,
as well as the opponents’ future actions. Moreover, GDL
allows us to write domain-independent agents, in the sense
that they only receive domain-knowledge at run-time.

However, there are a number of aspects specific to auto-
mated negotiations that are not handled well by GDL and
the existing GGP server. Therefore, we think that it is nec-
essary to write a new server application, specific for negoti-
ations. This server will handle rule enforcement and should
be able to verify whether any action is compatible with any
strategy defined as a formula in SGL.

We have shown that a simple Negotiating Prisoner’s Dilemma
can be described correctly in GDL, as well as the more com-
plex domain of ANAC 2014. Furthermore, we have shown
that it is indeed possible for a GGP algorithm to success-
fully negotiate in the Negotiating Prisoner’s Dilemma even
though it is not designed for negotiations. For the larger
ANAC 2014 domain we still need to find out whether exist-
ing GGP techniques are able to handle it.

10. ACKNOWLEDGMENTS
This work was sponsored by an Endeavour Research Fel-

lowship awarded by the Australian Government, Depart-
ment of Education.

11. REFERENCES
[1] T. Baarslag, K. Hindriks, C. M. Jonker, S. Kraus, and

R. Lin. The first automated negotiating agents
competition (ANAC 2010). In T. Ito, M. Zhang,
V. Robu, S. Fatima, and T. Matsuo, editors, New
Trends in Agent-based Complex Automated
Negotiations, Series of Studies in Computational
Intelligence. Springer-Verlag, 2010.

[2] S. Ceri, G. Gottlob, and L. Tanca. What you always
wanted to know about datalog (and never dared to

ask). IEEE Transactions on Knowledge and Data
Engineering, 1(1):146–166, 1989.

[3] D. de Jonge. Negotiations over Large Agreement
Spaces. PhD thesis, Universitat Autònoma de
Barcelona, 2015.

[4] D. de Jonge and C. Sierra. NB3: a multilateral
negotiation algorithm for large, non-linear agreement
spaces with limited time. Autonomous Agents and
Multi-Agent Systems, 29(5):896–942, 2015.

[5] A. Fabregues. Facing the Challenge of Automated
Negotiations with Humans. PhD thesis, Universitat
Autònoma de Barcelona, 2012.

[6] A. Fabregues and C. Sierra. Dipgame: a challenging
negotiation testbed. Engineering Applications of
Artificial Intelligence, 2011.

[7] P. Faratin, C. Sierra, and N. R. Jennings. Negotiation
decision functions for autonomous agents. Robotics
and Autonomous Systems, 24(3-4):159 – 182, 1998.
Multi-Agent Rationality.

[8] P. Faratin, C. Sierra, and N. R. Jennings. Using
similarity criteria to make negotiation trade-offs. In
International Conference on Multi-Agent Systems,
ICMAS’00, pages 119–126, 2000.

[9] S. Fatima, M. Wooldridge, and N. R. Jennings. An
analysis of feasible solutions for multi-issue
negotiation involving nonlinear utility functions. In
Proceedings of The 8th International Conference on
Autonomous Agents and Multiagent Systems - Volume
2, AAMAS ’09, pages 1041–1048, Richland, SC, 2009.
International Foundation for Autonomous Agents and
Multiagent Systems.

[10] A. Ferreira, H. Lopes Cardoso, and L. Paulo Reis.
Dipblue: A diplomacy agent with strategic and trust
reasoning. In 7th International Conference on Agents
and Artificial Intelligence (ICAART 2015), pages
398–405, 2015.

[11] H. Finnsson. Simulation-Based General Game Playing.
PhD thesis, School of Computer Science, Reykjavik
University, 2012.

[12] M. Genesereth, N. Love, and B. Pell. General game
playing: Overview of the aaai competition. AI
Magazine, 26(2):62–72, 2005.

[13] M. R. Genesereth and M. Thielscher. General Game
Playing. Synthesis Lectures on Artificial Intelligence
and Machine Learning. Morgan & Claypool
Publishers, 2014.

[14] T. Ito, M. Klein, and H. Hattori. A multi-issue
negotiation protocol among agents with nonlinear
utility functions. Multiagent Grid Syst., 4:67–83,
January 2008.

[15] D. E. Knuth and R. W. Moore. An analysis of
alpha-beta pruning. Artificial Intelligence, 6(4):293 –
326, 1975.

[16] L. Kocsis and C. Szepesvári. Bandit based monte-carlo
planning. In Proceedings of the 17th European
Conference on Machine Learning, ECML’06, pages
282–293, Berlin, Heidelberg, 2006. Springer-Verlag.

[17] S. Kraus. Designing and building a negotiating
automated agent. Computational Intelligence,
11:132–171, 1995.

[18] N. Love, M. Genesereth, and T. Hinrichs. General

game playing: Game description language
specification. Technical Report LG-2006-01, Stanford
University, Stanford, CA, 2006.
http://logic.stanford.edu/reports/LG-2006-01.pdf.

[19] I. Marsa-Maestre, M. A. Lopez-Carmona, J. R.
Velasco, and E. de la Hoz. Effective bidding and deal
identification for negotiations in highly nonlinear
scenarios. In Proceedings of The 8th International
Conference on Autonomous Agents and Multiagent
Systems - Volume 2, AAMAS ’09, pages 1057–1064,
Richland, SC, 2009. International Foundation for
Autonomous Agents and Multiagent Systems.

[20] I. Marsa-Maestre, M. A. Lopez-Carmona, J. R.
Velasco, T. Ito, M. Klein, and K. Fujita. Balancing
utility and deal probability for auction-based
negotiations in highly nonlinear utility spaces. In
Proceedings of the 21st International Jont Conference
on Artifical Intelligence, IJCAI’09, pages 214–219, San
Francisco, CA, USA, 2009. Morgan Kaufmann
Publishers Inc.

[21] J. Nash. The bargaining problem. ”Econometrica”,
”18”:155–162, 1950.

[22] J. S. Rosenschein and G. Zlotkin. Rules of Encounter.
The MIT Press, Cambridge, USA, 1994.

[23] E. E. S. Kraus, D. Lehman. An automated diplomacy
player. In D. Levy and D. Beal, editors, Heuristic
Programming in Artificial Intelligence: The 1st
Computer Olympia, pages 134–153. Ellis Horwood
Limited, 1989.

[24] S. Schiffel and M. Thielscher. M.: Fluxplayer: A
successful general game player. In In: Proceedings of
the AAAI National Conference on Artificial
Intelligence, pages 1191–1196. AAAI Press, 2007.

[25] R. Serrano. bargaining. In S. N. Durlauf and L. E.
Blume, editors, The New Palgrave Dictionary of
Economics. Palgrave Macmillan, Basingstoke, 2008.

[26] M. Thielscher. A general game description language
for incomplete information games. In Proceedings of
the Twenty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2010, Atlanta, Georgia, USA, July
11-15, 2010, 2010.

[27] J. von Neumann. On the theory of games of strategy.
In A. Tucker and R. Luce, editors, Contributions to
the Theory of Games, pages 13–42. Princeton
University Press, 1959.

[28] D. Zhang and M. Thielscher. A logic for reasoning
about game strategies. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial
Intelligence (AAAI-15), pages 1671–1677, 2015.

