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Abstract. As a contribution to the metatheory of reasoning about actions, we
present some characteristics of the consistency of action theories. Three levels
of consistency are investigated for the evaluation of action descriptions: uniform
consistency, consistency of formulas and regional consistency. The first two pro-
vide an intuitive resolution of problems of explanation conflicts and fluent depen-
dency. The concept of regional consistency provides for a measure of ramifica-
tion. A highly expressive form of action descriptions, the normal form, is intro-
duced to facilitate this analysis. The relative satisfiability of the situation calculus
is generalized to accommodate non-deterministic effects and ramifications.

1 Introduction

The metatheory of logical frameworks for reasoning about actions has received justi-
fied attention in recent times [15, 18, 12, 24, 21]. These studies have helped to establish
a systematic methodology for the evaluation of the various frameworks proposed for
reasoning about action. An important baseline property for all formal systeamis
sistency In reasoning about actions, an accurate and consistent action description is
crucial since problems in the action description infect all further reasoning about the
dynamic domain it describes. We show that the issues raised in the consistency analysis
of action descriptions are significant and interesting. The consistency of both the logical
system itselfand the action description of the dynamic domain needs to be evaluated.
Incorrect, incomplete and inconsistent action descriptions can be detected and rectified,
leading to a better understanding of the dynamic domain and a better formalization of
the problem.

Several formalisms exist for reasoning about actions such as the situation calculus
[23], action languages [6], the event calculus [13], the fluent calculus [26] and dynamic
logic [10]. Since consistency is generally defined in terms of the associated deductive
system and its properties generally require semantical consideration, a logic of action
possessing a sound and complete deductive system would be most helpful in consis-
tency analysis. Seen in this light, dynamic logic might be the best candidate among these
formalisms of action. Several advantages to reasoning about actions in dynamic logic
can be emphasized. Firstly, dynamic logic, with its underlying semantics of transition
systems, is aatural framework for reasoning about actions. Dynamic logic was origi-
nally developed for reasoning about programs; any program can be viewed as an action



and any action can be implemented by programs. Secondly, dynamic logic can spec-
ify the entire spectrum of actions: compound, non-deterministic and concurrent. Of-
ten, dynamic logic expresses such actions more naturally than other action formalisms.
Thirdly, dynamic logic provides a sound and complete axiomatic deductive system and
a well-developed Kripkean semantics. Its proof and model theory have reached a high
degree of sophistication and maturity. Features such as decidability and the finite model
property of propositional dynamic logid®( L), and techniques such as bisimulation
and filtration, are well understood. Within Artificial Intelligence, dynamic logic has
been used to investigate computational properties of formalisms such as features log-
ics, description logics and conditional logics. With this in mind, we exploit an extended
propositional dynamic logicEPDL [27]. This system offers a unified treatment of
reasoning about direct and indirect effects of actions, thus enabling a representation of
action effects and causal ramifications. We introduce techniques for consistency analy-
sis of action descriptions i P D L frameworks. Three different levels of consistency
are provideduniform consistencyf action descriptionsY'-consistencyf formulas
andregional consistencgf action descriptions. Uniform consistency conveys informa-
tion about what kinds of action descriptions guarantee proper runs of a dynamic system.
J-consistency of formulas informs us of which situations a dynamic system can start
up from and run properly. It also serves as a tool with which to detect incorrect and inad-
equate action descriptions. The concept of regional consistency provides for a measure
of ramification. Addressing the issue of consistency of action descriptions provides an
alternative approach to thinking about classical problems in reasoning about action.

2 EPDL Preliminaries

We summarize some basic facts of the extended propositional dynamic logiD ()
(see [27] for more details). In propositional dynamic logieDL), a causal relation
between an action: (primitive or compound) and a property is expressed by the
modal formula:[a]A, meaning & (always) causes! if « is feasible”. For exam-
ple, [Turn_of f]-light says that “turning off the switch causes the light to be off”.
The dual operatota) A, reads & is feasible and may (or possibly) causefsjo be
true”. For instance{Spin)—loaded says that “spinning a gun barrel may cause it to
be unloaded” (o) T means & is feasible or executable”. IKPDL, propositions are
allowed as modalities. The formula] A, termedpropositional causatiojrepresents a
cause-effect relationship between the propositioand the formulad and is read as
“¢ causesA”. For example[short -circuit|damaged says that “short-circuits cause
the circuit to be damaged”.

A languageLgppr Of EPDL consists of a seFlu of fluent symbols and a set
Actp of primitive action symbols. Propositions (€ Pro), formulas A € Fma) and
actions ¢ € Act) are defined by the following BNF rules:

pu=f|-pler— p2

Aim f=A| Ay - Az | [a]A ][]
az=al|la;a|agUas | a* | A?
wheref € Flu anda € Actp.



The definitions ofT (true), L(false), v, A, <« are as usual. A literal is a fluent or
its negation. The set of all the literals is denotedRiyiy,. We introduce the following
notation:

([a)A =ges (@) T A [a]A, meaning & must causel”;

<a=A=4 (a)T — (a)A, meaning ff « is feasible, may cause A3

The semantics fof gppy, is similar toPD L. Since the propositional modalify]
is treated as a normal modal operator, the semantic conditions for propositional modal-
ities are exactly the same as action modalities except for the following extra conditions:

— If M = @, then(w, w) € R,,.
— If =9 < ¢, thenR, = Ry.

The axiom system foE PD L extendsP DL [9] by one axiom:
— CW axiom:[p]A — (¢ — A)
and one inference rule:
— CE: Fromyp < ¢ infer [¢)]A < [p]A

The classicalK axiom and inference rulé&V (necessitation) are respectively ex-
tended to accommodate propositional modalities:

— EK axiom:[7](A — B) — ([7]A — [1]B)
— EN:From A infer [v] A.
whereyp, ¢ € Pro, A € Fmaand~ € Pro U Act.

A formula A is provablefrom a setl” of formulas, denoted by’ - A, if there exist
Aq,---, A, € I'suchthat (A;A---AA,) — A. Tisconsistenin EPDLIf 't/ L.

3 Action descriptions and their normal forms

EPDL provides a formal language végtion descriptionso describe the behavior and
internal relationships of a dynamic system. These specify the effects and feasibility of
actions, causal ramifications and other domain constraints.

Example 1.Consider the Yale Shooting Problem [11]. 81 = {alive, loaded, walking}
andActp = {Load, Shoot, Wait}. This problem can be specified by the following
action description:

=loaded — [Load)loaded

loaded — [Shoot|—alive

X = < loaded — [Shoot]-loaded
[—alive]~walking
(Load) T, (Wait) T, (Shoot) T

3 Note that these two operators are dual, keq = A = —{([a])—A.



Formulas in an action description are significantly different from ordinary formu-
las. For instance, the sentendedded — [Shoot|—alive” says that whenevdbaded
is true, Shoot causes-alive. In the language of situation calculus, this is written as
Vs(loaded(s) — —alive(do(Shoot, s))). Indeed, we need to view the action descrip-
tion of a dynamic domain as a set of extra axioms (domain axioms in the situation
calculus [23]) rather than an ordinary set of formulas in reasoning about the domain.

Definition 1. [27] Let X be an action description. A formuld is X-provable, written
ask* A, if it belongs to the least set of formulas which contains all the theorems of
EPDL, all elements of’, and is closed under Modus Ponens anid/.

If I" is a set of formulas, thel' ¥ A means there existd,, ---, A,, € I" such
that-* (A} A--- A A,) — A

Example 2.Consider the action description in Example 1. We can easily prove that

1. —loaded % [Load; Shoot]—alive
2. —loaded -* [Load; Shoot]~walking
3. ¥ ([Load; W ait; if —loaded? do Load endif; Shoot])—alive

Note that the action description in Example 1 does not completely specify the do-
main since it does not include information abouaffectedluents. Without frame ax-
ioms we can neither prove nor refute the very intuitive relatidoaded -* [Load;W ait;Shoot|-alive.
A solution to the frame problem then, is necessary for reasoning with such incomplete
action description$.

Let X' be an action description. A mod&! of EPDL is aX-modelif M = B for
any B € X. It can be proved that iV is finite, thenA is X-provable iff A is valid in
everyX'-model[27].

3.1 Normal action descriptions

An action description can be any set of formulas in ;8D L language. However, in
most cases we prefer the simple normal form in order to obtain better properties and
more convenient treatment. The following kinds of formulas are said to berimal

form:

— [¢]L (causal law)
— ¢ — [a]L (deterministic action law)
— ¢ —= a > L (non-deterministic action law)
— ¢ — (a)T (qualification law).
whereyp is a propositional formulal, is a literal andz is a primitive action.

4 Since the frame problem is not the main concern of this paper, we omit a solution for it; we
just add frame axioms when needed. See [1, 7,5, 22, 4] for PDL-based solutions to the frame
problem.



An action descriptionY’ is normal if each formula inX' is in normal form. It is
easy to see that the action descriptions in Example 1, 3, 5 and 7 are normal. Action
descriptionY’; in Example 6 is normal buts is not.

Although the normal form is restricted, it is quite expressive. It can exhiesst
or indirect, deterministicor non-deterministieffects of actions, andualificationsof
actions. Most normal forms in other action theories can be transformed:iftd L
normal form (propositional case only). For instance, action descriptions written in the
form of pre-condition axioms and successor state axioms ipiy@ositionalsituation
calculus language (i.e., there are no sotigectand function symbols in the language
[23]) can be translated into thieé P D L normal form by the following procedure:

1. For each pre-condition axiooss(a, s) = ¢(s), the associated laws are:
¢ = ()T, ~¢ = [alf, ~¢ — [a]~f
wheref can be any fluent symbol (choosing one).
2. For each successor state axigiflo(r, s)) = ¢(m, s) , wherer is an action vari-
able, the associated laws are:
¢ — lalf, ~p — [a]~f
wherer is instantiated by each primitive actian

Most components of action languages [6] can also be expresse®ByL normal
form. For example, ¢ causesL if " in the action languaged can be translated to
“¢ — [a]L"; a static law ‘tausedL if ¢©” in the languag€ is translated to[{]L”; and
an expressiond may causeL if ¢” in C is translated to¢) —=< a > L”. The same
translation procedure will work for action descriptions in STRIPS [3].

4 Consistency of Action Descriptions

As noted above, an action description acts as an axiomatic specification of a dynamic
system highlighting the importance of consistency. We now consider three different
levels of consistencyconsistency of formulagonsistency of action descriptioasid
consistency of formulas with action descriptioBach of these conveys different infor-
mation about the dynamic system under consideration.

4.1 Uniform consistency of action descriptions

As defined above, a sét of formulas is consistent if' I/ 1. Semantically, it means

that there is a model in which is satisfied insomeworld. As far as the consistency

of an action description is concerned, however, ordinary consistency is not enough to
guarantee that a dynamic system runs properly. As a set of domain axioms, an action
description should be consistent wiélmy possible evolution of the dynamic system
under any combination of actiong/ith this in mind, we define the consistency of action
descriptions as follows:

Definition 2. Let X be a set of formulasY is uniformly consistenif #~ L.

By the soundness and completenes&’gfrovability [27], we have



Theorem 1. X' is uniformly consistent if and only if there existe&éamodel.

Obviously, uniform consistency implies ordinary consistency. The following high-
lights the difference between the two.

Example 3.Let Flu = {f1, fa, f3} andAct = {a}. X = {{a) T, [a]f1, [a]f2, f1 —
[a]f3, fo — [a]—f3}. ThenX is consistent but not uniformly so.
1

= [alfy A lalfo (AD)
2.5 fi — [a]f3 (AD)
3.5 fo—la]=fs (AD)
4.7 [a](fi — [alf3) (2 and EN)
5.-> [a]fi — [a][a]f3 (4 and EK)
6.5 [a][a] f5 (1 and 5)
7.+ [a][a]=f3 (Similar to 6)
8. [a][a] L (6 and 7)
9.F¥ (a)T (AD)
10.5> [a(a) T (9 and EN)
11.+% [a]=[a] L (10)
125-* [a]L (8 and 11)
13.-° | (9 and 12)

Where AD denotes “action description”.

By the finite model property of# PD L, the uniform consistency of an action de-
scription is decidable. However, satisfiability P DL is EX PTIM E-hard. So de-
ciding the consistency of action descriptions is, in general, intractable. Can we put any
syntactical restrictions on action descriptions, say normal form, to make it easier? Is
any action description in normal form uniformly consistent? Unfortunately, Example 3
shows that this is not true. Further assumptions are necessary.

Let X' be a normal action description. For any flugnand any primitive actiom,
if we merge the action laws aboutand f(— f) in each form together, there are at most
five laws about: and f in X

o —(a)T
11— lalf, ¢12 — [a]~f
w21 —==a>"f,p22—==<a>f

If ¢, ¢1 1andyp; o are true simultaneously, then the action description will contain a
contradiction. Similarly forp, ¢1,; andys ; (j = 1 or j = 2). For simplicity, we make
the following assumption.

Assumption L F ¢ V —@1,1 Vo 2 @andk = V —eq,; Vs (5 =1, 2).

If some law is absent, say; 1 — [a]f, we usel — [a]f instead. Note that if
v is a proposition, ther ¢ in EPDL if and only if ¢ is a tautology in the classical
propositional logic.

The assumption 1 only acts on action laws. Similar assumptions could be also made
about causal laws. An effect of an action can be either a direct effect (caused by an
action) or an indirect effect (caused by other propositions). In most cases (but not all),
we can separate the indirectly affected fluents from the directly affected ones [14].



Assumption 2: There is a partition{ Flu,, Flu; } of Flu such thafflu = Fluy; UFlu;
and

1. for eachf € Flu, if both [p1]f and[ps]—f are in X, thent —p; V —ps.

2. for each causal lavito] L, all the fluents inp are fromFlu, and L is a literal in
Flu;;

The first condition of the assumption is similar to the assumption 1. The second
condition is intended to avoid recursive indirect effects of actions. For the sake of sim-
plicity, we only allow two layers of causal propagation (as in [14]). More complicated
cases can be investigated by using the approach in [2].

Definition 3. A normal action description isafeif it is satisfies the Assumptions 1 and
2.

It is easy to see that the action descriptions in Example 1 and 5 are safe but 3 and 7
are not. An interesting observation is any action description which is translated from an
action description in the propositional situation calculusimatelysafe.

Proposition 1. If X' is an action description generated by the procedure in Section
3.1 from a set of precondition axioms and successor state axioms in the propositional
situation calculus, thetl is safe.

The following theorem is one of the main results in the paper.

Theorem 2. Let X be a normal action description. If it is safe then is uniformly con-
sistent.

This theorem gives us a sufficient condition to check the consistency of an action
description by using only propositional logic and the syntax of the action description.
Therefore if an action description is written in normal form the consistency checking
of the action description becomes a co-NP problem. Specially, as a corollary of the
theorem and Proposition 1, an action description is innately uniformly consistent if it
is written as a set of precondition axioms and successor state axioms. Note that pre-
condition axioms and successor state axioms in propositional situation calculus lan-
guage are much less expressive than normal form.

4.2 3-consistency of formulas

As defined, a set of formulas is consistent if a contradiction cannot be derived from it.
More precisely, its consistency means that it is consistent with the basic axioms and
inference rules o/ PD L, which does not guarantee that it is consistent with arbitrary
action descriptions.

Let X be an action description. A sétof formulas is¥-consistentf I F/* L. Itis
easy to see thal’-consistency of " requires the consistency 6f, the uniform consis-
tency of X, and even more. For examplgpaded, —alive, walking} is consistent, but
not X'-consistent, wheré’ is the action description in Example 1, which is uniformly
consistentX’-consistency of a set of formulas conveys the information that a dynamic



system can properly run from an initial situation as specified by the formulas. More in-
terestingly, we notice that in classical logic, a set’s inconsistency is due to the set itself
if the deductive system of the logic is consistentinconsistency of a set, is however,
due to both the setndthe action description. If the set consists of observed facts, the
inconsistency must lie in the action description. This provides us with a formal tool to
detect incorrect or inadequate action descriptions.

Example 4.Consider the Yale shooting scenario with a new actibitice and add the
following action law and qualification law (c.f. [26]):

—walking — [Enticelwalking
—alive — [Entice]-alive
(Entice)T

Putting these together with the action description in Example 1 generates a new
action description”’. ThenY” is still safe and so uniformly consistent. Note that the
set{—alive, ~walking} is X’'-inconsistent.

We can easily see that there is no any problem with the-setive, ~walking}
(these can be observed facts). The problem here can only lie in the action descrip-
tion and specifically, in the newly introduced action laws. Indeed, the qualification law
(Entice) T is problematic. A correct description of the qualificationfftice would
be: alive — (Entice)T. We might be tempted to think that this consistency check
provides a solution to the qualification problem: we can automatically generate quali-
fication laws from a given action description by default reasoning instead of explicitly
listing them in the action description. Unfortunately, this does not always work.

Example 5.Consider the following circuit introduced by [26] and its action description:

[swi A swa]light —(:—.—.—
[-swy V —sws] —light W sW2
o ) swi— [Toggle;|sw; @ light
) sw; — [Toggle;]~sw;
(Toggle;) T
i=1,2 I

The first sentence says that switch 1 and switch 2 being closed causes the light to
be on. The second says that one of the switches being open causes the light to be off.
-sw; — [Toggle;]sw; means that if switch is open, then toggling switchcauses it
to be on. Suppose now that we have an action the_Bulb. The action laws about the
action are:

light — [Hit_the_Bulb]-light
(Hit_the_Bulb)T

Adding these as well as the frame axioms, — [Hit_the_Bulb]sw; andswy —
[Hit_the_Bulblswy to X, results in an action descriptio®;, which is uniformly con-
sistent. Notice thafswy, swa, light} is X’-inconsistent, which is obviously unaccept-
able.



In this case, it is not reasonable to change the qualification law_the_Bulb) T
into —swy V —swe — (Hit_the_Bulb)T. The problem is now in the causal ldww; A
swallight. We term this thegualification problem of effect propagatidfor a similar
discussion see [17]The examples above have shown that consistency checks can help
us detect incorrect action descriptions. The Stolen Car Problem [25] show&'that
inconsistency can be due to ttedequacyof the action description.

Example 6.Consider the following action description:
in_park — [Wait]in_park
X = ( —in_park — [Wait]—in_park
(Wait) T
X’ says that waiting does not affect the state of a parked car. It is easy to see that
{in_park, [Wait] —in_park} is X;-inconsistent. However, the observed facts are ex-
actly that originally the car was parketh(park) and that it is not there after a period
of time (W ait]—in_park).

The problem here is that the agent with this action description has no idea about
car’s theft: presumably, it should realize that leaving a car alone might cause it to be
stolen K Wait - stolen). A car’s theft means that it had been parked somewhere, but
disappeared after a period of timén (park — [Wait] (—in_park < stolen)). So the
correct action description should be:

< Wait > stolen
Yo = ¢ in_park — [Wait](—inpark < stolen)
(Wait) T
wherestolen is a fluent. Then we have an explanation for the observed facts:

{in_park, [W ait|—in_park} =*2 [Wait]stolen.

We would like to remark that consistency checking can help us detect the incorrect-
ness and inadequacy of an action description but it can not remedy the action description
because they are actually two types of problems.

The following theorem is quite useful in the diagnosisttonsistency:

Theorem 3. Let X be a normal and safe action description. LX) = {¢ — L :
[¢]L € X'}. For any setl” of propositional formulas, if” U D(X) is consistent, thef’
is X-consistent.

Therefore, we can check the-consistency of a set of propositional formulas using
propositional logic (the complexity of which is P U co-NP).

Let us compare the result above with a similar meta-theorem in the situation calcu-
lus [21]. Suppose thal consists of pre-condition axioms and successor state axioms,
andI” consists of initial state axioms as in the situation calculus. According to Theo-
rem 3 and Proposition 1 is X-consistent if and only iff” is consistent in proposi-
tional logic (note thatD(X") is empty here). This coincides with tlielative Satisfi-
ability theorem (Theorem 1 in [21]), which says that an action thédiig satisfiable
iff the initial state axioms and unique name axioms are satisfiable. In other words, the
foundational axioms, pre-condition axioms and successor state axioms cannot introduce



inconsistency. Since the situation calculus in [21] applies to only domains without non-
deterministic actions and ramifications, Theorem 3 can be viewed as a generalization
of the Relative Satisfiabilityheoren.

4.3 Regional consistency of action descriptions

Ramification in dynamic systems arises as a consequence of fluent dependencies. The
following notion of consistency provides for a means of assessing the fluent dependen-
cies present in a system.

Definition 4. Let X' be an action description arid be a subset oFlu. X' is region-
ally consistenbver U if any interpretation/ of U is X-consisterft ¥ is universally
consistent if it is regionally consistent ovEtu.

Regional consistency of action descriptions reflects local independence of fluents.
In other words, ifY is regionally consistent ovér, any change of truth-value of fluents
in U does not affect each other (but does affect the fluents out8idehis information
is computationally important because once the value of a fluefitimichanged, only
the fluents outsid€ need to be revaluated (see [8]).

Example 7.Consider the circuit introduced by [26] and described with the following
simplified action description

SW1 SW2
—sw; — [Toggle;|sw; — e

sw; — [Toggle;]~sw;
[swi A swa] light

Y =< [nswy V swe] Dlight
[swl AN 511.)3] —Sw2
(Toggle;) T
i=1,2,3

light
SW3

ThenX is regionally consistent ovdisw, sws}, but not over{ swy, sws, sws} or
any supersets. This implies Switch 1 and Switch 3 can be controlled independently, but
Switch 2 cannot. So if we take an actiawygle;, only those facts which are relevant
to the direct effectd{w;) and the indirect effectss{vs andliight) need to be revaluated
(sw3 can be ignored).

Regional consistency acts also aseasureof ramification. The larger the consis-
tent area of an action description, the less ramification it has. If an action description is
universally consistent, there m® ramification between fluents.

5 There are extended versions of situation calculus in the literature [19, 16] which can deal with
non-deterministic or indirect effects of actions expressed by successor state axioms. However,
Relative Satisfiability is not necessarily true in the extended frameworks without introducing
extra restrictions on action descriptions.

5 An interpretation/ of U means a maximal consistent set of literals dier



Proposition 2. Let X' be a normal and safe action descriptidiFlu,, Flu; } is a par-
tition of Flu which satisfies Assumption 2 of safety. Th&is reginally consistent over
Fluy. If there are no causal laws iV, thenX' is universally consistent.

As noted previously, any action description which is translated from a set of pre-
condition axioms and successor state axioms in the propositional situation calculus is
universally consistent. This explains why the solution for the frame problem in [23]
applies only to actions without ramifications.

The idea of regional consistency is close to the onfrashes in the space of situ-
ationd14]. A frame is a set of fluents which are directly affected by actions. With the
concept, the values of the frame fluents can be specified by effect axioms and the law
of inertia while the values of non-frame fluents are determined by domain constraints
or causal laws. It has been remarked in [14] that a frame be neither too large nor too
small. However, it is not clear that what kind of sets of fluents are qualified to be a
frame. For the case of normal and safe action descriptions, it is obviouF'thatis
a “qualified” frame. For the general case, it is still an open problem. We believe that
regional consistency is helpful towards a solution to the problem.

5 Conclusion

In this study we have investigated the characteristics of the consistency of action theory.
Three levels of consistency were introduced for the evaluation of action descriptions.
These provide an intuitive resolution of problems of explanation conflicts, fluent depen-
dency and a measure of ramification. The highly expressive normal form of action de-
scriptions greatly facilitates such an analysis. Several meta-theorems on the consistency
of normal action descriptions have been given which show how to generate a consis-
tent action description and how to check the consistency of normal action descriptions.
Our results generalize the Relative Satisfiability Theorem in the situation calculus to al-
low non-deterministic effects of actions and ramifications. Our study, then, contributes
significantly to the meta-theory of reasoning about actions in providing tools for eval-
uating formally, the adequacy of a logical framework. Although our approach is based
on the extended propositional dynamic logic (for its unified expression of direct and
indirect effects of actions and its sound and complete deductive system), all the results
on the consistency of action descriptions are applicable to other formalisms of actions
since the expressions of action descriptions are often intertranslatable. The application
of these techniques also leads to new insights on classical problems in reasoning about
actions.

Appendix: Proof of Theorems:

Proof of Theorem 2 Let X* be a variant of2 which is generated by the following
procedure:
Step 1: Sets = X* and for each primitive action,

1. if there is no a qualification law — (a)T € X, thenletL — (a)T € X*;



2. for each fluent literal, if there is no deterministic action law — [¢]L in X', add
1 — [a]L to X*.

3. for each fluent literal, if there is no non-deterministic action lagg—~< a > L
inX, addl —<a > L toX*.

Step 2: for each primitive actiom and fluent literallL, suppose that all the action
laws in 2* abouta and L are:

o —(a)T

w11 — [a]L, p1,2 — [a]-L

P21 —=<a>"L,pr0—<a>L

then, we replacgs 1 —»< a > Lby (mpV —p11) =< a > L,andyps s —»< a >
Lby (- V -y 2) =<a> L.

We termX* the completion of”. It is easy to verify that

1. if X’ is normal and safe, theh™ is;
3. if X* is uniformly consistent, the®' is.

Without loss of generality, suppose thidt= X*. For such an action descriptidn,
we construct a standard model = (W, {R, : « € Act} U{R, : ¢ € Fmap},V)
of Lgppr, as follows:

1. W = {w : wis an interpretation of'lv and for eachy|L € X, w =pr, ¢ — L}.
Heres E=py, ¢ meansp is true under the interpretatianby means of propositional
logic.

2. For each primitive action € Actp, (w,w’) € R, iff

— there existsp — (a) T € X such thatw =py, ¢,
— foreveryy — [a]L € X, if w E=py @, thenw' =pr, L; and
— there existyy —=< a = L € X such thatw =py,  andw’ =py, L.

3. For any propositional formulg € Fmap, (w,w’) € R,iff w = v’ andw =pr,
®;

4. For any compound action € Act, R,, is given inductively by the standard model
condition ona.

5. For any primitive propositiop, V(p) = {w : w =pr, p}.

Let XL = {p — L : J[¢]L € X}. Itis easy to see tha¥/ exists if OFF is
consistent. In facty "% is consistent because, otherwise, for any interpretatiof
Flu, there exists a causal lay]L € X such that/ ~p; ¢ — L. Pick up such a law
[¢]L € X. ThenI = ¢ A —L. Let I’ be the interpretation df'lu which differs from/
only in the interpretation of. i.e.,I’ = L,or I’ = ¢ — L. If there is no other causal
law [¢']L in X, whereL is the dual literal ofl,, the truth-values of the formulas &~
other thanp — L stay unchanged under the interpretatiémccording to assumption
2 of safety. If there existg'|L € X, then forl = ¢, I = —¢' (by the assumption
2 of safety again). It follows that’ = —¢', or I’ = ¢’ — L. Therefore, the number
of formulas inX which is falsified byl’ is one less than the number ByContinuing
this way, we can generate an interpretation which satisfi8s. This means2 ' is
consistent.



It is easy to show that for any € Fmap, M =, ¢ iff w Epr ¢. Now we prove
that X is valid in M.

1. Suppose thdtp] L € X. For anyw € W, according to the construction oF,
w Epr ¢ — L. If w' € W with wR,w’, by the construction oRR,, w = w’ and
w EpL ¢, SOow E=pr, L. That mean¥w € W(M =, [¢]L), SOM = [¢]L.

2. Suppose that — [a]L € X. Foranyw € W, if M =, ¢, thenw =py, ¢. Thus
for anyw’ € W with wR,w’, by the construction ob, w’ =pr, L, SOM =, L.
ThereforeM = ¢ — [a]L.

3. Suppose thapy —< a = Ly € X. Lety; — (a)T be the qualification law
for a. For anyw € W, if M [£, 1, thenw £pp ;. According to the construction
of M, there is now’ € W such that(w,w’) € R,, thusM =,< a > Lo, that is,
M Euw w0 —= a = Ly; otherwiseM =, 1, thenw E=pr 1. According to the
construction of2*, w =py, po. Let Hy = {L : 3¢ — [a]L € X(w E=pr ©)} U{Lo}.
We now prove thaf{; is consistent. To this end, suppose that there is a corffiéatd
_\f in Hy.

Case 1if = Ly or =f = Lo, say the former, there must exist a law — [a]-f €
Y. According to the assumption of safety,~¢g V —p1 V =p2. We know thatw Epj,
©wo A 1, SOW Epy, wo. Thus—f ¢ Hy, a contradiction.

Case 2;f # Ly and—f # Lo, then there must be another lawy — [a]f € X.
According to the assumption of safety again,—p; V -y V —p3. We know that
w Epr @1, thus,w = —ps V —g3. This contradicts bottf and—f in H;.

Secondly, we extend/; into H, such that for any fluenf € Flug, f € H, iff
-f ¢ H,. That meandd, is an interpretation oFlug. Next, let H; = HoU {L :
Jlp]L € Y (Hz EpL ¢)}. Itis not hard to prove thall; is consistent by assumption
2 of safety. Finally, we extendll3 into an interpretation of F'lu. It is easy to see that
w' € Wand(w,w’) € R,. Therefore M =, oo —< a = L.

4. For anypg — {(a)T € X, suppose thall =, oo, thatis,w Epr ¢o.
According to the construction df*, for eachp; =< a > L € X, w Epr, 1. By the
proof of last step, there i’ € W such thaiw, w’) € R,, thereforeM =, (a)T, or
M [y po — {a)T.

We conclude thad/ is a X’-model. O

Proof of Theorem 3 Assume that” is not X-consistent, that is]” > L. According
to the proof of the theorem 2, there exist&amodel M = (W, R, V') such that

W = {w : wis an interpretation of'lu and for eachy|L € ¥, w =p;, ¢ — L}

Sincel’ U D(X) is consistent, there exists, € W such that\f |=,,, I', a contra-
diction. Therefore is X-consistent. O

Proof of Proposition 2: First we prove that for any interpretatidrof Flu,, I U D(X)
is consistent. Lef’ be an interpretation df'lu which is an extension of and assigns
to each fluent ifF'lu; true. According to Assumption 2)(X) is true underl’, so is
I'UD(X). ThusI U D(X) is consistent. Then by Theorem 3, each interpretatiof
Flu, is X-consistent. Therefor® is regionally consistent ovdflu,. O
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