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Abstract. This paper explores logical properties of belief-revision-based
bargaining solution. We first present a syntax-independent construction
of bargaining solution based on prioritized belief revision. With the con-
struction, the computation of bargaining solution can be converted to
the calculation of maximal consistent hierarchy of prioritized belief sets.
We prove that the syntax-independent solution of bargaining satisfies a
set of desired logical properties for agreement function and negotiation
function. Finally we show that the computational complexity of belief-
revision-based bargaining can be reduced to ΔP

2 [O(log n)].
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1 Introduction

Much recent research has shown that belief revision is a successful tool in model-
ing logical reasoning in bargaining and negotiation[2,4,5,14,15,16]. These studies
have established a qualitative solution to bargaining problem, which differenti-
ates them from the traditional game-theoretic solution[6,11]. In [16], Zhang et al.
proposed an axiomatic system to specify the logical reasoning behind negotiation
processes by introducing a set of AGM-like postulates[1]. In [4,5], Meyer et al.
further explored the logical properties of these postulates and their relationships.
In [16], Zhang and Zhang proposed a computational model of negotiation based
on Nebel’s syntax-dependent belief base revision operation[8] and discussed its
game-theoretic properties and computational properties. It was shown that the
computational complexity of belief-revision-based negotiation can be ΠP

2 -hard.
However, it is left unknown that how this computational model related to the
axiomatic approach to negotiation. In this paper, we shall establish a relation-
ship between these two approaches and reassess the computational complexity
of belief-revision-based negotiation. In order to make two different modeling ap-
proaches comparable, we shall redefine the bargaining solution given in [16] based
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on the assumption that bargaining inputs are logically closed1. We then shown
that the computation of agreements can be reduced to the construction of max-
imal consistent hierarchies of negotiation items. Based on this result, we show
that the new definition of bargaining solution satisfies most of desired logical
properties of negotiation. Finally we present a completeness result on computa-
tional complexity of belief-revision-based bargaining solution, which shows that
the decision problem of bargaining solution is ΔP

2 [O(log n)]-complete. This result
significantly improves the result presented in [16].

Similar to the work in [16], we will restrict us to the bargaining situations
within which only two agents are involved. We assume that each agent has a set
of negotiation items, referred to as demand set, which is describable in a finite
propositional language L. The language is that of classical propositional logic
with an associated consequence operation Cn in the sense that Cn(X) = {ϕ :
X � ϕ}, where X is a set of sentences. A set K of sentences is logically closed or
called a belief set when K = Cn(K). If X , Y are two sets of sentences, X + Y
denotes Cn(X ∪ Y ).

Suppose that X1 and X2 are the demand sets of two agents. To simplify
exploration, we will use X−i to represent the other set among X1 and X2 if Xi

is one of them.

2 Prioritized Belief Revision

Suppose that K is a belief set and � a pre-order2. We define recursively a
hierarchy, {Kk}+∞

k=1, of K with respect to the ordering � as follows:

1. K1 = {ϕ ∈ K : ¬∃ψ ∈ K(ϕ ≺ ψ)}; T 1 = K\K1.
2. Kk+1 = {ϕ ∈ T k : ¬∃ψ ∈ T k(ϕ ≺ ψ)}; T k+1 = T k\Kk+1.

where ϕ ≺ ψ denotes ϕ � ψ and ψ �� ϕ. The intuition behind the construction is
that each time collects all maximal elements and remove them from the current
set.

We will write K≤l to denote
l⋃

k=1
Kk. The following lemma shows that the

hierarchy can only be finite if � satisfies the following logical constraint:

(LC) If ϕ1, · · · , ϕn � ψ, min{ϕ1, · · · , ϕn} � ψ.

It is easy to see that such an order can induce an AGM epistemic entrenchment
and vice versa[3]. Therefore such an ordering will be referred to as a epistemic
entrenchment(EE) ordering. The following lemma is easy to verify and will be
used intensively throughout the paper.
1 This assumption is essential because Zhang and Zhang’s construction of bargaining

solution is syntax-dependent(logically equivalent inputs could result different out-
comes). Without the assumption, even the most fundamental postulates, such as
Extensionality, cannot be satisfied.

2 A pre-order over a set we mean in this paper is a complete ordering over the set
which is transitive and reflexive.
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Lemma 1. Let K be a belief set and � a pre-order over K which satisfies (LC),
then

1. for any l, K≤l is a belief set.

2. There exists a number N such that K =
N⋃

k=1
Kk.

Let O be any set of sentences in L, we define the degree of coverage of O over
K, denoted by ρK(O), to be the greatest number l that satisfies K≤l ⊆ O.

It is well-known that an AGM belief revision operator can be uniquely de-
termined by an epistemic entrenchment ordering. Similar to [16], we will define
a belief revision function based on the idea of maximizing retainment of most
entrenched beliefs.

By following the convention introduced by Nebel[8], for any belief set K, a
set of sentences F , and an EE ordering � over K, we define K ⇓ F as follows:
for any H ∈ K ⇓ F ,

1. H ⊆ K;
2. for all k = 1, 2, · · ·, H ∩ Kk is set-inclusion maximal among the subsets of

Kk such that
k⋃

j=1
(H ∩ Kj) ∪ F is consistent.

We call ⊗ a prioritized revision function over (K, �) if it is defined as follows:

K ⊗ F
def
=

⋂

H∈K⇓F

Cn(H) + F.

Lemma 2. [Nebel 1992] ⊗ satisfies all AGM postulates.

3 Belief-Revision-Based Bargaining Solution

Now we redefine the bargaining solution given in [16]. Different from their work,
we will define a bargaining game as a pair of prioritized belief sets rather than a
pair of prioritized belief bases. We will see that this change results a significant
differences in logical properties.

Definition 1. A bargaining game is a pair of prioritized belief sets ((K1, �1 ),
(k2, �2)), where Ki is a belief set in L and �i (i = 1, 2) is an EE ordering over
Ki.

The definition of deals remains the same as in [16].

Definition 2. Let B = ((K1, �1), (K2, �2)) be a bargaining game. A deal of B
is a pair (D1, D2) satisfying the following two conditions: for each i = 1, 2,

1. Di ⊆ Ki;
2. for each k = 1, 2, · · ·, Di ∩ Kk

i is set-inclusion maximal among the subsets

of Kk
i such that

k⋃

j=1
(Di ∩ Kj

i ) ∪ D−i is consistent.
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The set of all deals of B is denoted by Ω(B).

We remark that since K1 and K2 are belief sets, it is easy to prove that for any
deal (D1, D2), both D1 and D2 are logically closed. This property will play a
key role in the proofs of theorems in Section 4.

Definition 3. For any bargaining game B = ((K1, �1), (K2, �2)), we call Φ =
(Φ1, Φ2) the core of the game if

Φ1
def
=

⋂

(D1,D2)∈γ(B)

D1, Φ2
def
=

⋂

(D1,D2)∈γ(B)

D2

where
γ(B) = {D ∈ Ω(B) : ρB(D) = ρB}
ρB(D)

def
= min{ρK1(D1), ρK2(D2)}

ρB
def
= max{ρB(D) : D ∈ Ω(B)}

It is easy to see that γ(B) represents the subset of Ω(B) that contains the deals
with the highest degree of coverage over all deals in Ω(B). The min-max con-
struction of the core captures the idea that the final agreement should maximally
and evenly satisfy both agents’s demands(see [16]).

Now we can finalize the reconstruction of bargaining solution.

Definition 4. A bargaining solution is a function A which maps a bargaining
game to a set of sentences (agreement), defined as follows. For each bargaining
game B = ((K1, �1), (K2, �2))

A(B)
def
= (K1 ⊗1 Φ2) ∩ (K2 ⊗2 Φ1) (1)

where (Φ1, Φ2) is the core of B and ⊗i is the prioritized revision function over
(Ki, �i).

We call A(B) (sometimes we write it as A(K1, K2)) an agreement function. It
is easy to see that the outcomes of an agreement function do not depend on the
syntax of its inputs. However, if the bargaining solution defined in [16] takes belief
sets as inputs, it will give exactly the same outcomes as the above definition.
In such a sense, the logical properties we discuss in the following section can be
viewed as the idealized properties of the bargaining solution defined in [16].

4 Logical Properties of Bargaining Solution

In this section, we will present a set of logical properties of the bargaining solution
we introduced in the previous section. We will show that the solution satisfies
most desired properties for agreement functions and negotiation functions. To
establish these properties, we need a few technical lemmas. Note that none of
the lemmas holds without the assumption of the logical closeness of belief sets.
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Lemma 3. Given a bargaining game B = ((K1, �1), (K2, �2)), let πmax =
max{k : K≤k

1 ∪ K≤k
2 is consistent} and (Ψ1, Ψ2) = (K≤πmax

1 , K≤πmax

2 ). Then
(Φ1, Φ2) = (K1 ∩ (Ψ1 + Ψ2), K2 ∩ (Ψ1 + Ψ2)).

Proof. Before we prove the main result of the lemma, we first show that ρB =
πmax. For any deal D = (D1, D2) such that K≤πmax

1 ⊆ D1 and K≤πmax

2 ⊆
D2, we have ρB(D) ≥ πmax. Thus ρB ≥ πmax. On the other hand, for any
D ∈ γ(B), ρB(D) = ρB, which means that ρK1(D1) ≥ ρB and ρK2(D2) ≥ ρB.
According to the definition of degree of coverage of a deal, K

≤ρK1 (D1)
1 ⊆ D1 and

K
≤ρK2(D2)
2 ⊆ D2. So either ρK1(D1) ≤ πmax or ρK2(D2) ≤ πmax as D1 ∪ D2

is consistent. Therefore ρB ≤ min{ρK1(D1), ρK2(D2)} ≤ πmax. We have proved
that ρB = πmax.

Obviously if K1 ∪ K2 is consistent, then (Φ1, Φ2) = (K1, K2). Therefore we
will assume that K1 ∪ K2 is inconsistent. We only prove Φ1 = K1 ∩ (Ψ1 + Ψ2).
The second component is similar.

For any (D1, D2) ∈ γ(B), we have Ψ1 ⊆ D1 and Ψ2 ⊆ D2. In fact, we can
prove that K1 ∩ (Ψ1 + Ψ2) ⊆ D1. If it is not the case, there exists a sentence
ϕ ∈ K1 ∩ (Ψ1 + Ψ2) but ϕ �∈ D1. On one hand, ϕ ∈ K1 ∩ (Ψ1 + Ψ2) implies
that D1 ∪ D2 � ϕ. On the other hand, ϕ �∈ D1 implies that {ϕ} ∪ D1 ∪ D2
is inconsistent (otherwise D1 will include ϕ). It follows that D1 ∪ D2 � ¬ϕ.
Therefore D1 ∪ D2 is inconsistent, a contradiction. We have proved that for any
deal (D1, D2)γ(B), K1 ∩ (Ψ1 +Ψ2). Thus K1 ∩ (Ψ1 +Ψ2) ⊆

⋂

(D1,D2)∈γ(B)
D1 = Φ1.

Now we prove that Φ1 ⊆ K1 ∩ (Ψ1 +Ψ2). To this end, we assume that ϕ ∈ Φ1.
If ϕ �∈ Ψ1 + Ψ2, we have {¬ϕ} ∪ Ψ1 ∪ Ψ2 is consistent. On the other hand, since
K≤πmax+1

1 ∪ K≤πmax+1
2 is inconsistent, there exists a sentence ψ ∈ K≤πmax+1

1
such that ¬ψ ∈ K≤πmax+1

2 (because both K≤πmax+1
1 and K≤πmax+1

2 are logically
closed). Since {¬ϕ} ∪ Ψ1 ∪ Ψ2 is consistent, there is a deal (D1, D2) ∈ γ(B) such
that {¬ϕ ∨ ψ} ∪ Ψ1 ⊆ D1 and {¬ϕ ∨ ¬ψ} ∪ Ψ2 ⊆ D2. We know that ϕ ∈ Φ1, so
ϕ ∈ D1 + D2. Thus ψ ∧ ¬ψ ∈ D1 + D2, a contradiction. ¶

Lemma 4. Assume that Ψ1, Ψ2 and πmax are defined as Lemma 3. Then

K1 ⊗1 Φ2 = K1 ⊗1 Ψ2 and K2 ⊗2 Φ1 = K2 ⊗2 Ψ1

where ⊗i is the prioritized revision function over (Ki, �i).

Proof. We only present the proof for the first statement. The second one is
similar.

First it is easy to prove that Ψ1 + Ψ2 ⊆ K1 ⊗1 Φ2. It follows that K1 ⊗1 Φ2 =
K1 ⊗1 Φ2 + (Ψ1 + Φ2). On the other hand, according to Lemma 3, we have
Φ2 ⊆ Ψ1 + Ψ2. Since ⊗1 satisfies the AGM postulates, we then have K1 ⊗1 Φ2 +
(Ψ1 +Φ2) = K1 ⊗1 (Ψ1 +Ψ2). Therefore K1 ⊗2 Φ2 = K1 ⊗1 (Ψ1 +Ψ2). In addition,
it is easy to prove that Ψ1 ⊆ K1 ⊗1 Ψ2. By AGM postulates again, we have
K1 ⊗1 Ψ2 = K1 ⊗1 Ψ2 + Ψ1 = K1 ⊗1 (Ψ1 + Ψ2). Therefore K1 ⊗1 Φ2 = K1 ⊗1 Ψ2.¶

Lemma 5. Assume that Ψ1, Ψ2 and πmax are defined as Lemma 3. Let
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Ψ ′
1 = K

≤π1
max

1 , where π1
max = max{k : K≤k

1 ∪ K≤πmax

2 is consistent},
Ψ ′

2 = K
≤π2

max
2 , where π2

max = max{k : K≤πmax

1 ∪ K≤k
2 is consistent}.

Then

K1 ⊗1 Φ2 = Ψ ′
1 + Ψ2 and K2 ⊗2 Φ1 = Ψ1 + Ψ ′

2.

where ⊗i is the prioritized selection revision over (Ki, �i).

Proof. We only present the proof for the first statement. The second one is
similar. According to Lemma 4, K1 ⊗1 Φ2 = K1 ⊗1 Ψ2. Therefore we only need
to prove that K1 ⊗1 Ψ2 = Ψ ′

1 + Ψ2.
If Ψ ′

1 = K1, K1 ∪ Ψ2 is consistent. Then K1 ⊗1 Ψ2 = K1 + Ψ2. We have
K1⊗1Ψ2 = K1+Ψ2 = Ψ ′

1+Ψ2, as desired. If Ψ ′
1 �= K1, according to the definition

of π1
max, we have K

≤π1
max+1

1 ∪K≤πmax

2 is inconsistent. It follows that there exists a

sentence ϕ ∈ K
≤π1

max+1
1 such that ¬ϕ ∈ K≤πmax

2 = Ψ2 (note that both K
≤π1

max+1
1

and K≤πmax

2 are logically closed). Now we can come to the conclusion that
Ψ ′

1 + Ψ2 = K1 ⊗1 Ψ2. In fact, by the construction of prioritized belief revision,
we can easily verify that Ψ ′

1 + Ψ2 ⊆ K1 ⊗1 Ψ2. To prove the other direction of
inclusion, we assume that ψ ∈ K1 ⊗1 Ψ2. If ψ �∈ Ψ ′

1 + Ψ2, then {¬ϕ} ∪ Ψ ′
1 ∪ Ψ2

is consistent. So is {¬ψ ∨ ϕ} ∪ Ψ ′
1 ∪ Ψ2. Notice that ¬ψ ∨ ϕ ∈ K

≤π1
max+1

1 . There
exists H ∈ K1 ⇓ Ψ2 such that {¬ψ ∨ ϕ} ∪ Ψ ′

1 ⊆ H . Since ψ ∈ K1 ⊗1 Ψ2 and H
is logically closed, we have ϕ ∈ H , which contradicts the consistency of H ∪ Ψ2.
Therefore K1 ⊗1 Ψ2 ⊆ Ψ ′

1 + Ψ2. ¶

Having the above lemmas, the verification of the following theorems becomes
much easier.

The first theorem shows that the calculation of agreement function can be
transferred to the calculation of maximal consistent hierarchies of two belief
sets.

Theorem 1. For any bargaining game B = ((K1, �1), (K2, �2)),

A(B) = (Ψ ′
1 + Ψ2) ∩ (Ψ1 + Ψ ′

2) (2)

where Ψ1, Ψ
′
1, Ψ2 and Ψ ′

2 are defined as Lemma 5.

Proof. Straightforward from Lemma 5. ¶

We remark that the computation of Ψ1, Ψ
′
1, Ψ2 and Ψ ′

2 has much less cost than
the calculation of the core of a game. This explains why we could reduce the
computational complexity of bargaining solution significantly (see Section 5).

The following theorem shows the basic logical properties of agreement function.

Theorem 2. Let A is a bargaining solution. For any bargaining game B =
((K1, �1), (K2, �2)), the following properties hold:

(A1) A(K1, K2) = Cn(A(K1, K2)).
(A2) A(K1, K2) is consistent.
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(A3) A(K1, K2) ⊆ K1 + K2.
(A4) If K1 ∪ K2 is consistent, then K1 + K2 ⊆ A(K1, K2).

Given Theorem 1, the verification of the above properties is trivial. One may
notice that the above properties are similar to the postulates introduced in [4] for
negotiation outcomes. In fact, our agreement function satisfies all the postulates
for negotiation outcomes except

(O4) K1 ∩ K2 ⊆ A(K1, K2) or A(K1, K2) ∪ (K1 ∩ K2) |= ⊥.

The following is a counterexample.

Example 1. Let K1 = Cn({p, ¬q, r}) with the hierarchy K1
1 = Cn({p}) and

K2
1 = K1\K1

1 . Let K2 = Cn({q, ¬p, r}) with the hierarchy K1
2 = Cn({q}) and

K2
2 = K2\K1

2 . Then Ψ1 = Ψ ′
1 = Cn({p}) and Ψ2 = Ψ ′

2 = Cn({q}). It follows
that A(K1, K2) = Cn({p, q}). Obviously (O4) does not hold for this example.

The reason that both agents give up their common demand r is the following.
If an agent demands ¬p or ¬q, the agent needs to commit herself to accept its
logical consequence ¬p ∨ ¬r or ¬q ∨ ¬r, respectively. Since r is less entrenched
than the commitment by both agents, they have to give up r in order to reach
the agreement Cn({p, q}). If the agents do not mean that, it should be explicitly
expressed in the initial demands.

The following theorem shows that with our construction of bargaining solu-
tion, we can define a negotiation function which is similar to the negotiation
function introduced by Zhang et al. in [14].

Theorem 3. Let N be a function defined as follows:

N(K1, K2) = (K1 ⊗1 Φ2, K2 ⊗2 Φ1)

where (Φ1, Φ2) is the core of the bargaining game B = ((K1, �1), (K2, �2)).
Then N has the following properties (Ni is the i-th component of N):

(N1) Ni(K1, K2) = Cn(Ni(K1, K2)). (Closure)
(N2) Ni(K1, K2) ⊆ K1 + K2. (Inclusion)
(N3) If K1 ∪ K2 is consistent, then K1 + K2 ⊆ Ni(K1, K2). (Vacuity)
(N4) If Ki ∪ Ni(K1, K2) is consistent, then Ki ⊆ Ni(K1, K2). (Consistent

Expansion)
(N5) If Ki ∪N−i(K1, K2) is consistent, then N−i(K1, K2) ⊆ Ni(K1, K2). (Safe

Expansion)

Proof. The proof of (N1)-(N4) is trivial by Theorem 1. For (N5), since Ki∪(Ψ ′
−i+

Ψi) is consistent, we have π−i
max = πmax. It follows that N−i(K1, K2) = Ψ1 + Ψ2.

Therefore N−i(K1, K2) ⊆ Ni(K1, K2). ¶
We can see that the properties of Closure, Inclusion, Vacuity and Consistent
are exactly the same as the corresponding postulates in [14]. The postulate Ex-
tensionality is trivially true for our definition. The postulates Inconsistency and
Iteration are not applicable in our case because we do not consider inconsis-
tent inputs and iteration operations. The following example illustrates that the
postulate No Recantation is invalid for our definition of negotiation function.
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Example 2. Let K1 = Cn({p, ¬q, r}) with the hierarchy K1
1 = Cn({p}), K2

1 =
Cn({p, ¬q})\K1

1 and K3
1 = K1\K≤2

1 . Let K2 = Cn({q, r}) with the hierarchy
K1

2 = Cn({q}) and K2
2 = K2\K1

2 . Then Ψ1 = Ψ ′
1 = Cn({p}), Ψ2 = Cn({q}) and

Ψ ′
2 = Cn({q, r}). It follows that N1(K1, K2) = Cn({p, q}) and N2(K1, K2) =

Cn({p, q, r}). Therefore r ∈ K1 ∩ N2(K1, K2) but r �∈ N1(K1, K2).

As a weak version of No Recantation the property of Safe Expansion says that if
an agent initiatively gives up all the demands which conflicts to the other agent,
the other agent should accept all the consistent demands from the first agent.

5 Computational Complexity

In [16], Zhang and Zhang shows that the complexity of belief-revision-based
bargaining solutions is ΠP

2 -hard. This result is based on the syntax-dependent
construction of bargaining solution.

Theorem 4. [Zhang and Zhang 2006] Let B be a bargaining game and ϕ a
formula. Deciding whether A(B) � ϕ is ΠP

2 -hard, where A(B) is the agreement
function defined in [16].

In this section, we will show that the complexity can be reduced if we use the
syntax-independent construction of agreement function.

We assume that readers are familiar with the complexity classes of P, NP,
coNP, ΔP

2 [O(log n)], ΔP
2 and ΠP

2 . It is well known that P ⊆ NP ⊆ ΔP
2 [O(log n)]

⊆ ΔP
2 ⊆ ΠP

2 , and these inclusions are generally believed to be proper (readers
may refer to [10] for further details).

Given a bargaining game B = ((K1, �1), (K2, �2)), since K1 and K2 are
logically closed, they are infinite sets even though the language we consider is
finite. To make computation possible, we assume that equivalent statements
are represented by only one sentence, so a belief set can be finite3. In such a
sense, we will refer a bargaining game B to a pair of prioritized belief sets,
((X1, �1), (X2, �2)), where Xi is finite sets of sentences and �i is a pre-order
over Xi which satisfies logic constraint (LC). According to Lemma 1, for each
i = 1, 2, we can always write Xi = X1

i ∪ · · · ∪ Xm
i , where Xk

i ∩ X l
i = ∅ for

any k �= l. Also for each k < m, if a formula ϕ ∈ Xk
i , then there does not

exist a ψ ∈ X l
i (k < l) such that ϕ ≺i ψ. Therefore, for the convenience of our

complexity analysis, in the rest of this section, we will specify a bargaining game
as B = (X1, X2), where X1 =

⋃m
i=1 X i

1 and X2 =
⋃n

j=1 Xj
2 , and X1

1 , · · ·, Xm
1 ,

and X1
2 , · · ·, Xn

2 are the partitions of X1 and X2 respectively and satisfy the
property mentioned above. According to Theorem 1, we can define an agreement
function by Equation (2) as

A(B) = (Ψ ′
1 + Ψ2) ∩ (Ψ1 + Ψ ′

2) (3)
3 In fact, the complexity results presented in this section do not require the belief

sets in a bargaining game to be logically closed. We can view Equation (2) as the
approximation of bargaining solution.
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where
(Ψ1, Ψ2) = (

π�

i=1
Xi

1,
π�

i=1
Xi

2);

(Ψ ′
1, Ψ

′
2) = (

π1�

i=1
Xi

1,
π2�

i=1
Xi

2);

π = max{k : (
k�

i=1
Xi

1) ∪ (
k�

i=1
Xi

2) is consistent};

π1 = max{k : (
k�

i=1
Xi

1) ∪ (
π�

i=1
Xi

2) is consistent};

π2 = max{k : (
π�

i=1
Xi

1) ∪ (
k�

i=1
Xi

2) is consistent}.

Theorem 5. Let B = (X1, X2) be a bargaining game and ϕ a formula. Deciding
whether A(B) � ϕ is ΔP

2 [O(log n)]-complete.

Proof. Membership proof. Let B = (X1, X2), where X1 =
m⋃

i=1
X i

1 and X2 =

n⋃

i=1
Xj

2 . Firstly, we can find a maximal k with a binary search such that if
k⋃

i=1
Xk

1 ∪
k⋃

i=1
Xk

2 is consistent but
k+1⋃

i=1
X i

1 ∪
k+1⋃

i=1
X i

2 is no longer consistent. Obviously, we

will need O(log n) times search. Secondly, we fix
k⋃

i=1
X i

1, and find a maximal p

such that
k⋃

i=1
X i

1 ∪
p⋃

j=1
Xj

2 is consistent but
k⋃

i=1
Xk

1 ∪
p+1⋃

j=1
Xj

2 is not inconsistent.

Note that we should have k ≤ p. Also, this can be done with a binary search in

time O(log n). In a similar way, we can fix
k⋃

i=1
X i

2 and find a maximal q satisfying

that
q⋃

i=1
X i

1 ∪
k⋃

j=1
Xj

2 is consistent and
q+1⋃

i=1
X i

1 ∪
k⋃

j=1
X i

2 is not consistent. So we

can compute A(B) using a deterministic Turing machine with O(log n) queries
to an NP oracle. Finally, we check the consistency of A(B) ∪ {¬ϕ} with one
query to an NP oracle. So the problem is in ΔP

2 [O(log n)].
Hardness proof. By restrict B = (X1, X2) where X1 = {ϕ1} ∪ · · · ∪ {ϕn} and

X2 = {ψ}. Then it is easy to see that our bargaining problem is identical to the
cut base revision, which implies that deciding whether A(B) � ϕ is ΔP

2 [O(log n)]-
hard [7]. ¶
The following result shows that if we restricts the language to be Horn clauses,
the decision problem of bargaining solution is tractable.

Theorem 6. Let B be a bargaining game and ϕ a formula where all formulas
occurring in B and ϕ are Horn clauses. Deciding whether A(B) � ϕ is in P.

6 Conclusion and Related Work

In this paper, we have presented a set of logical properties of belief-revision-based
bargaining solution. By representing bargaining game as a pair of prioritized belief
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sets, the computation of bargaining solution can be converted to the construction
of maximal consistent hierarchy of two agents’ belief sets. Based on the result, we
have shown that the agreement function and negotiation function defined by the
bargaining solution satisfies most of postulates introduced in the literature. Our
complexity analysis indicates that in general the computation of belief-revision-
based bargaining solution can be reduced or be approximated to ΔP

2 [O(log n)]-
complete.

This work is closed related to [16]. In fact, we can view the syntax-independent
bargaining solution is a special case of syntax-dependent bargaining solution
when bargaining games consists of belief sets. Although the assumption of logical
closeness is just an idealized case, it is essential to disclose the logical properties
behind the negotiation reasoning. We have shown that our solution to negoti-
ation problem is different from the axiomatic approaches [4,5,14]. Since these
formalisms are all based on the assumption of logical closeness, it is possible
to apply our approach to develop a concrete construction for their negotiation
functions.
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