

Preemption-aware Admission Control in a Virtualized Grid Federation

Mohsen Amini Salehi, Bahman Javadi, Rajkumar Buyya

CLOUDS Laboratory

Department of Computing and Information Systems
The University of Melbourne, Australia
{mohsena,bahmanj,raj}@csse.unimelb.edu.au

MELBOURNE

Introduction: InterGrid

- Provides an architecture and policies for interconnecting different Grids.
- Computational resources in each Grid are shared between grid (External) users and local users.
 - Local users have preemptive priority over external users!

Contention between Local and External (Ext.) users

- Why contention happens?
 - Lack of resource (oversubscription of resources)
- Solution for Contention:
 - Preemption of Ext. requests in favor of local requests
- Preemption increases the response time and leads to deadline violation for Ext. requests.

Research Question

- Deadline violations is because of oversubscription to the ext. requests.
- Resource owners tend to accept as many ext. requests as possible.
- The question that arises is:
 - What is the ideal number of ext. requests a cluster can accept in a way that:
 - The number of accepted ext. requests is maximized
 - Deadline violation is avoided

Our approach: Using Admission Control.

Problem Statement

- What is the optimal queue length (K_j) for ext. requests for in cluster j?
 - Analytical modeling of preemption for ext. requests in a cluster.

Analytical Model

Our primary objective function is:

$$E(R_j) = E(W_j) + E(T_j) \le D$$

 Assume that overall run time of an ext. request is ω, and encounters n preemptions before getting completed, then service time is:

$$T_j = e_1^j + l_1^j + e_2^j + l_2^j + \dots + e_n^j + l_n^j + \epsilon$$

• Arrival rate of local requests (λ_j) follows Poisson distribution, so n follows Gamma distribution:

$$E(n) = \lambda_j \omega$$

Analytical Model(2)

$$E(T_j) = E(E(T_j|n)) = \omega + \lambda_j \omega E(l_1^j)$$

• We assume that local requests follow M/G/1 model, then:

$$E(T_j) = rac{\mu_l^j \cdot \omega}{\mu_l^j - \lambda_j} = rac{\omega}{1 -
ho_l^j}$$

•The average waiting time of external requests in the *M/G/1/K* queue is:

$$E(W_j) = rac{1}{\Lambda_j} \sum_{k=0}^{K_j-1} k \cdot P_{d,k}^j + rac{K_j}{\Lambda_j} (P_{d,0}^j +
ho_e^j - 1) - E(T_j)$$

We have to figure out ρ_e^j and $P_{d,k}^j$

• ρ_{e}^{j} is the queue utilization for external requests:

$$ho_e^j = \Lambda_j \cdot E(T_j) = rac{\omega \cdot \Lambda_j}{1 -
ho_l^j}$$

Analytical Model(3)

• $P^{j}_{d,k}$ is the probability that a newly arriving external request encounters k requests waiting in the queue of cluster j:

$$P_{d,k}^{j} = \frac{P_{\infty,k}^{j}}{\sum_{i=0}^{K_{j}-1} P_{\infty,i}^{j}}, k = 0, 1, ..., K_{j} - 1$$

$$\sum_{i=0}^{j} P_{\infty,i}^{j}$$

$$P_{\infty,k}^{j} = \frac{1}{\mu_{e}^{j}} \cdot \left(a_{k-1} \cdot P_{\infty,0}^{j} + \sum_{i=1}^{k-1} a_{K_{j}-i} \cdot P_{\infty,i}^{j} \right)$$

$$a_{k}^{j} = \int_{0}^{\infty} \frac{(t\lambda_{j})^{k}}{k!} \cdot e^{-t\lambda_{j}} \cdot b_{j}(t) \cdot d_{t}$$

Analytical Model(4)

- $b_j(t)$ is the probability density function (PDF) of service time for ext. requests.
- Gong et al.¹ prove the service time of ext. requests with preemption follows the Gamma distribution.
- Based on Gamma distribution:

$$b_j(t) = rac{(t/lpha)^{eta-1} \cdot e^{-t/lpha}}{lpha \cdot \Gamma(eta)}$$

Preemption-aware Admission Control Policy (PACP) for cluster *j*

Algorithm 1: Preemption-aware Admission Control Policy (PACP) in cluster j.

```
Input: \Lambda_i, \theta_i, \omega, \lambda_i, \mu_e^j, \mu_l^j, rate_l, u_l, u_h
   Output: K_i (Queue length)
1 D \leftarrow (rate_l * u_l * \omega) + ((1 - rate_l) * u_h * \omega);
2 K_i \leftarrow 0;
3 ExpectedResponse_j \leftarrow 0;
 4 while ExpectedResponse_i < D do
      /*calculating E(R) for a queue with
        length K_i in cluster j_*/
 6 | \sigma \leftarrow 0;
      for N_a^j \leftarrow 0 to K_j - 1 do
        \sigma + = N_q^j \cdot P_{d,N_q^j}^j;
        ExpectedResponse_j \leftarrow \frac{1}{\Lambda_i} \cdot \sigma_j + \frac{K_j}{\Lambda_i} (P_{d,0}^j + \rho_e^j - 1);
                                                                                  MELBOURNE
        K_i \leftarrow K_i + 1;
10
```

Performance Metrics

We define D (average deadline of ext. requests) as:

$$D = (rate_l \cdot u_l \cdot \omega) + ((1 - rate_l) \cdot u_h \cdot \omega)$$

- $rate_l$ is the proportion of low-urgency ext. requests and u_l , u_h are the deadline ratios.
- Deadline Violation Rate (DVR):

$$DVR = \frac{(a \cdot v) + r}{a + r} \cdot 100$$

- a and r are percentage of accepted and rejected requests. v is the deadline violation ratio.
- Completed External Requests.

Experimental Setup

- We use GridSim for simulation
- 3 clusters with 64, 128, and 256 nodes and different computing speeds (2000, s2=3000, s3=2100 MIPS)
- Conservative Backfilling for cluster scheduling.
- Grid Workload Archive (GWA) is used to generate 2 days of bag-of-tasks requests.

Baseline Policies

- Conservative Admission Control Policy (CACP):
 - Admits as many requests as assigned by the IGG (queue length is infinite).
- Aggressive Admission Control Policy (AACP):
 - Each cluster accepts one external request at any time and tries to meet the deadline.
- Rate-based Admission Control Policy (RACP):
 - Queue length is determined based on the service rate for external requests and local request arrival rate in a cluster.

Deadline Violation Rate (DVR)

Completed External Requests

Conclusion and Future Work

- We explored the ideal number of ext. requests that a cluster can accept without violating deadlines in a federated Grid.
- We developed a performance model based on queuing.
- Experimental results indicate that the PACP decreases the deadline violation rate up to 20%.
- PACP leads to completing more ext. requests (up to 25%).
- In future, we plan to relax the assumption of moldable applications and solve the problem for all types of parallel requests.

•Any Question?

