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INTRODUCTION 

¢ Hybrid Cloud Systems 
�  Public Clouds 
�  Private Clouds 

¢ Resource Provisioning in Hybrid Cloud 
�  Users’ QoS (i.e., deadline) 
�  Resource failures  

¢ Taking into account 
�  Workload model 
�  Failure characteristics 

¢  Failure correlations  
¢  Failure model 

3 



HYBRID CLOUD ARCHITECTURE 

¢ Based on InterGrid components  
¢ Using a Gateway (IGG) as the broker 
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WORKLOAD MODEL 

¢ Scientific Applications  
�  Potentially large number of resources over a short 

period of time. 
�  Several tasks that are sensitive to communication 

networks and resource failures (tightly coupled) 

¢ User Requests 
�  Type of virtual machine;  
�  Number of virtual machines;  
�  Estimated duration of the request;  
�  Deadline for the request (optional). 
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FAILURES IN USER REQUESTS 

¢ Resource failure is inevitable 
�  Redundant components in public Clouds 

¢  highly reliable service 

�  Leads to service failure in private Clouds 
 

¢ Correlation in Failures à overlapped failures 
�  Spatial correlation means multiple failures occur on 

different nodes within a short time interval. 
�  Temporal correlation is the skewness of the failure 

distribution over which means failure events exhibit 
considerable autocorrelation at small time lags, so 
the failure rate changes over time. 
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FAILURES IN USER REQUESTS (CONT.) 

¢ The sequence of overlapped failures 

¢ Downtime of the service 
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applications are examples of such applications. Each application can include
several tasks and they are sensitive to communication networks in terms of
delay and bandwidth. Therefore, they may not benefit heavily from resource
co-allocation from multiple provides in virtualized environments [14], and
must be served with resources from a single resource provider. Moreover,
these sort of applications usually are not scalable in terms of required pro-
cessing elements and provide their best performance for a specific number
of processing elements (virtual machines). Hence, we consider a case where
there is a profile of the application execution to determine the number of
virtual machines. So, users do not need to specify S as an input parameter
for the required number of VMs.

In our problem, one request corresponds to an individual job whereas an
application can include several jobs. The user’s request can be thought of
as a rectangle whose length is the request duration (T ) and the width is the
number of required VMs (S) as is depicted in Figure 1. Note that R is the
estimated duration of the request while T is the actual request duration. In
Section 5.4, the relation between these two parameters is investigated.

Figure 1: Serving a request in the presence of resource failures.

2.3. Failure Model

In this work, we take into account resource failures in the system where a
failure is defined as an event in which the system fails to operate according to
its specifications. We investigate a case where we are only faced with resource
failures in the private Cloud as public Cloud environments are usually able
to provide highly reliable services to their customers [15]. The public Cloud
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Fig. 2. The hybrid Cloud architecture

III. THE PROPOSED RESOURCE PROVISIONING POLICIES

In this section, we propose the resource provisioning poli-
cies that include the scheduling algorithms of the local re-
sources (private Cloud) and the public Cloud as well as
brokering strategies to share the incoming load with the public
Cloud providers. The public Cloud providers adopt carefully
engineered modules that include redundant components to
cope with resource failures [15]. We assume that this design
style is too expensive to consider for private Clouds which
make them less reliable as compared to public Clouds. Thus,
we concentrate on resource failures of private Clouds.

The proposed policies are part of the broker (i.e., IGG) as
described in Section II-B. The proposed strategies are based
on the workload model as well as the failure correlation and
take advantage of knowledge-free approach, so they do not
need any information about the failure model. As a result, the
implementation of these policies in the AURIN environment
is simplified.

A. User Request

In the system under study, each request can be thought of
as a rectangle whose length is the user requested duration (T )
and the width is the number of required VMs (S). Since the
resources in the private Cloud are failure-prone, we would
have some failure events (Ei) in the nodes while a request
is getting serviced. In addition, it has been shown that there
are spatial and temporal correlations in the failure events as
well as dependency of workload type and intensity on the
failure rate [12], [13], [36]. Spatial correlation means multiple
failures occur on different nodes within a short time interval,
while temporal correlation in failures refers to the skewness
of the failure distribution over time. Therefore, we might have
several overlapped failure events in the system.

Let Ts(.) and Te(.) be the function that return the start
and end time of an failure event. Let H be the sequence of
overlapped failure events ordered according to increasing start
time that is,

H = {Fi | Fi = (E1, ..., En), Ts(Ei+1)  Te(Ei)} (1)

where 1  i  n � 1. Since we are dealing with the tightly
coupled workflows, all VMs must be available for the whole
requested duration, so any failure event in any VM would stop
the execution of the whole request. In this case, the downtime
of the service would be as follows:

D =
X

8Fi2H

(max{Te(Fi)}�min{Ts(Fi)}) (2)

The above analyses reveal that even in the presence of an
optimal fault-tolerant mechanism (e.g., perfect checkpointing)
in the private Cloud, a given request is faced with D time
units delay which may consequently breach the request’s
deadline. In other words, if the request has been stalled for
the duration of overlapping failures, a long delay may arise
and cause service unavailability. This is the justification of
utilizing highly reliable services from a public IaaS Cloud
provider. To deal width these failure properties, we proposed
three different strategies which are based on the workload
model for the general failure events.

B. Size-based Strategy
Several studies have explored the spatial correlation in

failure events in distributed systems [12], [13], i.e., where
multiple failures occur on different nodes within a short
time interval. This property can be very detrimental where
each request needs all VMs to be available for the whole
required duration. Moreover, as mentioned in Equation (2), the
downtime is strongly dependent on the number of requested
VMs. Therefore, the more VMs requested, the more likely
they jobs will be affected by simultaneously failures.

To cope with this situation, we proposed a redirecting
strategy that sends wider requests with larger S to more
reliable public Cloud systems, while minimizing requests
sent to potentially more failure-prone local resources. A key
element of this strategy is the mean number of VMs required
per request.

To determine the mean number of VMs per request, we
need the probability of different numbers of VMs in incoming
requests. Assume that P1 and P2 are probabilities of request
with one VM and power of two VMs in the workload,
respectively. So, the mean number of virtual machines required
by requests is given as follows:

S = P1 + 2dke(P2) + 2k (1� (P1 + P2)) (3)

Based on the parallel workload models, the size of each
request follows a two-stage uniform distribution with param-
eters (l,m, h, q) [22], [23]. This distribution consists of two
uniform distributions where the first distribution would be in
the interval of [l, m] with probability of q and the second one
with the probability of 1�q would be in the interval of [m, h].
So, m is the middle point of possible values between l and h.
Hence, k can be found as the mean value of this distribution
as follows:

k =
ql +m+ (1� q)h

2
(4)

The redirection strategy submits requests to the public
Cloud provider if the number of requested VMs is greater
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PROPOSED APPROACHES   

¢ Knowledge-free Approach 
�  No Failure Model 
�  Using failure correlation 
�  Three brokering policies 

¢ Knowledge-based Approach 
�  Failure Model 
�  Generic resource provisioning model 
�  Two brokering policies (cost-aware) 

¢ Workload model 
�  Request size 
�  Request duration 
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PROPOSED POLICIES 

¢ Size-based Strategy 
�  Spatial correlation : multiple failures occur on 

different nodes within a short time interval 
�  Strategy: sends wider requests to more reliable public 

Cloud systems 
�  Mean number of VMs per request 

¢  P1: probability of one VM 
¢  P2: probability of power of two VMs 

¢  Request size: two-stage uniform distribution (l,m,h,q) 
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Fig. 2. The hybrid Cloud architecture
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PROPOSED POLICIES (CONT.) 

¢ Time-based strategy 
�  Temporal correlation: the failure rate is time-

dependent and some periodic failure patterns can be 
observed in different time-scales  

�  Request duration: are long tailed.  
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•  The mean request duration 
•  Lognormal distribution in a 

parallel production system  

 

than S, otherwise the request will be serviced using resources
in the private Cloud.

C. Time-based Strategy

In addition to spatial correlation, failure events are often
correlated in the time domain which can result in a skewing
of the failure distribution over time [12]. As a result, the failure
rate is time-dependent and some periodic failure patterns
can be observed in different time-scales [36]. The longer
requests mainly affected by this temporal correlation since
these requests stay longer in the system and are likely to have
more failures. So, again there is a strong relation between
down time and the request duration. On the other hand, in
the real distributed systems, request duration (job runtime) are
long tailed [8], [28]. This means that a very small fraction of
all requests are responsible for the main part of the load.

The time-based strategy offers an efficient technique to solve
both above mentioned properties. We use the mean request
duration as the decision point for the gateway to redirect the
incoming requests to the Cloud providers. In other words, if
the request duration is less than or equal to the mean request
duration, the request will be run using local resources. By
this technique, the majority of short requests could meet the
workload deadline as they are less likely to encounter failures.
Moreover, longer requests will be served by more reliable
public Cloud provider resources where they can meet the
deadline under enhanced resource availability.

The mean request duration can be obtained from the fitted
distribution of the workload model. For instance, the request
duration of the parallel workloads in DAS-2 multi-cluster
system is the Lognormal distribution with parameters µ,�,
so the mean value is given as follows [22]:

T = eµ+
�2

2 (5)

The redirection strategy submits requests to the public Cloud
provider if the duration of request is greater than T , otherwise
will be serviced using local resources. Another advantage of
this strategy is better utilization of the Cloud resources. For
example with Amazon’s EC2, if a request uses a VM for less
than one hour, the cost of one hour must be paid. So, when
we redirect long requests to the public Cloud provider, this
waste of money will be minimized.

D. Area-based Strategy

The two aforementioned strategies are based on the only
one aspect of the request: number of VMs (S) or duration
(T ). A third strategy aimed at making a compromise between
the size-based and time-based strategy. Here we utilize the
area of a request as the decision point for the gateway - this
is given as the rectangle with length T and width S. Using
this model, we are able to calculate the mean request area by
multiplying the mean number of VMs by the mean request
duration, as follows:

A = T · S (6)

The redirection strategy submits requests to the public Cloud
provider if the area of the request is greater than A, otherwise
these requests will be serviced using local resources. This
strategy sends long and wide requests to the public Cloud,
so it would be more conservative than a size-based strategy
and less conservative than a time-based strategy.

E. Scheduling Algorithms
As described before, a resource provisioning policy consists

of a brokering strategy as well as an algorithm for scheduling
the requests across private and public Cloud resources. Based
on this, we utilize two well-know algorithms: conservative
[26] and selective backfilling [35]. With conservative back-
filling, each request is scheduled when it is submitted to
the system, and requests are allowed to leap forward in the
queue if they do not delay other queued requests. Selective
backfilling grants reservations to a request when its expected
slowdown exceeds a threshold, i.e., where the request has
waited long enough in the queue. The expected slowdown
of a given request is also called eXpansion Factor and can
be given as XFactor = Wi+Ti

Ti
, where Wi and Ti are the

waiting time and the run time of request i, respectively. We use
the Selective-Differential-Adaptive scheme proposed in [35],
which lets the XFactor threshold be the average slowdown of
previously completed requests.

After submitting requests to the scheduler, each VM runs on
one available node. In the case of resource failure during the
execution, we assume checkpointing so that the application is
started from where it left off when the node becomes available
again. The checkpointing issues are not in the scope of this
research and interested readers should refer to [3] to see how
checkpoint overheads and periods can be computed base on
the associated failure model.

IV. PERFORMANCE EVALUATION

In order to evaluate the performance of proposed poli-
cies, we implemented a discrete event simulator using
CloudSim [4]. We used simulation as experiments are repro-
ducible and the cost of conducting experiments on real public
Cloud resources would be prohibitively expensive.

The performance metrics which are considered in all sim-
ulation scenarios are the violation rate and the bounded
slowdown [9]. The violation rate is the fraction of requests
that do not meet a given deadline. The bounded slowdown for
the M requests is defined as:

Slowdown =
1

M

MX

i=1

Wi +max(Ti, bound)

max(Ti, bound)
(7)

where bound is set to 10 seconds to eliminate the effect of
very short requests [9].

To compute the cost of using resources from a public Cloud,
we use the amounts charged by Amazon to run basic virtual
machines and network usage at EC2. The cost of using EC2
for policy pl can be calculated as follows:

Costpl = (Hpl +Mpl ·Hu)Cn + (Mpl ·Bin)Cx (8)



PROPOSED POLICIES (CONT.) 

¢ Area-based strategy 
�  Making a compromise between the size-based and 

time-based strategy 
�  The mean area of the requests 

�  This strategy sends long and wide requests to the 
public Cloud,  

�  It would be more conservative than a size-based 
strategy and less conservative than a time-based 
strategy.  
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than S, otherwise the request will be serviced using resources
in the private Cloud.

C. Time-based Strategy

In addition to spatial correlation, failure events are often
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this technique, the majority of short requests could meet the
workload deadline as they are less likely to encounter failures.
Moreover, longer requests will be served by more reliable
public Cloud provider resources where they can meet the
deadline under enhanced resource availability.

The mean request duration can be obtained from the fitted
distribution of the workload model. For instance, the request
duration of the parallel workloads in DAS-2 multi-cluster
system is the Lognormal distribution with parameters µ,�,
so the mean value is given as follows [22]:

T = eµ+
�2

2 (5)

The redirection strategy submits requests to the public Cloud
provider if the duration of request is greater than T , otherwise
will be serviced using local resources. Another advantage of
this strategy is better utilization of the Cloud resources. For
example with Amazon’s EC2, if a request uses a VM for less
than one hour, the cost of one hour must be paid. So, when
we redirect long requests to the public Cloud provider, this
waste of money will be minimized.

D. Area-based Strategy

The two aforementioned strategies are based on the only
one aspect of the request: number of VMs (S) or duration
(T ). A third strategy aimed at making a compromise between
the size-based and time-based strategy. Here we utilize the
area of a request as the decision point for the gateway - this
is given as the rectangle with length T and width S. Using
this model, we are able to calculate the mean request area by
multiplying the mean number of VMs by the mean request
duration, as follows:

A = T · S (6)

The redirection strategy submits requests to the public Cloud
provider if the area of the request is greater than A, otherwise
these requests will be serviced using local resources. This
strategy sends long and wide requests to the public Cloud,
so it would be more conservative than a size-based strategy
and less conservative than a time-based strategy.

E. Scheduling Algorithms
As described before, a resource provisioning policy consists

of a brokering strategy as well as an algorithm for scheduling
the requests across private and public Cloud resources. Based
on this, we utilize two well-know algorithms: conservative
[26] and selective backfilling [35]. With conservative back-
filling, each request is scheduled when it is submitted to
the system, and requests are allowed to leap forward in the
queue if they do not delay other queued requests. Selective
backfilling grants reservations to a request when its expected
slowdown exceeds a threshold, i.e., where the request has
waited long enough in the queue. The expected slowdown
of a given request is also called eXpansion Factor and can
be given as XFactor = Wi+Ti

Ti
, where Wi and Ti are the

waiting time and the run time of request i, respectively. We use
the Selective-Differential-Adaptive scheme proposed in [35],
which lets the XFactor threshold be the average slowdown of
previously completed requests.

After submitting requests to the scheduler, each VM runs on
one available node. In the case of resource failure during the
execution, we assume checkpointing so that the application is
started from where it left off when the node becomes available
again. The checkpointing issues are not in the scope of this
research and interested readers should refer to [3] to see how
checkpoint overheads and periods can be computed base on
the associated failure model.

IV. PERFORMANCE EVALUATION

In order to evaluate the performance of proposed poli-
cies, we implemented a discrete event simulator using
CloudSim [4]. We used simulation as experiments are repro-
ducible and the cost of conducting experiments on real public
Cloud resources would be prohibitively expensive.

The performance metrics which are considered in all sim-
ulation scenarios are the violation rate and the bounded
slowdown [9]. The violation rate is the fraction of requests
that do not meet a given deadline. The bounded slowdown for
the M requests is defined as:

Slowdown =
1

M

MX

i=1

Wi +max(Ti, bound)

max(Ti, bound)
(7)

where bound is set to 10 seconds to eliminate the effect of
very short requests [9].

To compute the cost of using resources from a public Cloud,
we use the amounts charged by Amazon to run basic virtual
machines and network usage at EC2. The cost of using EC2
for policy pl can be calculated as follows:

Costpl = (Hpl +Mpl ·Hu)Cn + (Mpl ·Bin)Cx (8)
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GENERIC RESOURCE PROVISIONING MODEL 

model, an important issue in any distributed system, thereby
making our model a cost/failure-aware model. Moreover, our
provisioning policies are based on non-observable queues that
do not require any information about the input queue of
either local cluster or public Clouds. Therefore, in contrast
to the work by Assunção et al. [5], our proposed policies are
independent of the scheduling algorithms.

IV. THE PROPOSED GENERIC RESOURCE PROVISIONING

As mentioned earlier, the resource provisioning policy in
the system under study has three steps: resource brokering,
dispatching, and scheduling of requests. In this section, we
assume n providers and propose a generic solution for the
three resource provisioning steps.

A. Adaptive Brokering Strategy
We formulate the problem of resource brokering similar to

that of routing in the distributed parallel queues [2], [10]. That
is, we consider each resource provider as one server with a
given service rate; a scheduler that serves as an input queue;
and a broker that redirects the incoming requests to one of the
providers as shown in Figure 2.

In the following subsection, the proposed brokering strategy
finds the routing probabilities. We assume that the broker lo-
cated in front of n heterogeneous multi-server parallel queues
routes the given requests to providers according to the routing
probabilities P

i

.
Requests arrive to the broker with a given distribution I ,

mean E[I] = ��1 and variance V [I] = �2
I

. We assume the
broker holds no queues (we will elaborate on this assumption
in Section IV-B). Therefore, requests are handled immediately
by the broker upon arrival. Each resource provider is modeled
as a single queue with M

i

nodes and a local scheduler.
Furthermore, we assume service time of queue i follows a
given distribution S

i

with mean E[S
i

] = µ�1
i

and coefficient
of variance C

Si = �
Si · µi

.
Another aspect of the problem that must be taken into

account is the computing cost. While commercial Cloud is
made available in a pay-as-you-go manner, the computing cost
of local infrastructure usually is not easy to estimate, as it
depends on many issues such as life time, system utilization,
system technology, etc. However, ignoring the cost of a local
infrastructure and assuming the resources are free with respect
to the Cloud resources is unrealistic. There are some obvious
source of costs that can be considered, such as high start-up
costs for purchasing hardware or power and cooling costs.
Therefore, in this model, we associate a price, K

i

, to be
paid to each of provider i based on resource usage per time
unit. This parameter can be considered as the holding cost,
or weight per request per time unit at queue i. K

i

can be
defined as a constant value or a function of system parameters.
For example, in Amazon’s EC2, on-demand instances have
fixed price while Spot instances have variable price which is
a function of VM demand [1].

Considering the associated cost as well as response time
of the given requests for each resource provider, the objective

Fig. 2. Model of resource brokering for n providers.

function for the broker could be expressed as follows:

min
nX

i=1

(K
i

· E[T
i

]) (1)

where E[T
i

] is the expected response time of requests served
at queue i and is described in the following.

Based on Figure 2, queue i has the mean inter-arrival time
E[I

i

] = ��1
i

= (P
i

�)�1, so we can find its variance by Wald’s
equation [23] as follows:

V [I
i
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�2
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P
i

+ ��2(1� P
i

)

P 2
i

(2)

As mentioned before, queue i has the mean service time and
the coefficient of variance µ�1

i

and �
Si · µi

, respectively. As
the incoming requests have several VMs that potentially can
be as large as M

i

nodes, we model each provider with a single
server queue. By considering general distribution for the inter-
arrival time as well as the service time, each queue can be
modeled as a GI/GI/1 FCFS queue. Therefore, we are able
to approximate the expected response time of queue i by the
following equation2 [10]:

E[T
i

] =
1

µ
i

+
C2

Ii
� C2

Si

2(µ
i

� �
i

)
(3)

where C2
Ii

is the squared coefficient of variance for the
inter-arrival time at queue i, and can be calculated using
Equation (2) as follows:

C2
Ii
=

V [I
i

]

E[I
i

]2
= 1 + P

i

(�2�2
I

� 1) (4)

Next, we apply Lagrange multipliers method to optimize
Equation (1) using E[T

i

] from Equation (3) and assumingP
n

i=1 Pi

= 1. The solution of this optimization gives the
routing probabilities P

i

as follows:

P
i

=
µ
i

�
�

P
n

i=1 µi

� �

�
·

p
K

i

⌘
iP

n

i=1

p
K

i

⌘
i

(5)

2There are several approximations for this queue in the literature, but we
choose one which is a good estimate for heavily loaded systems.

Ki: price of 
provider i 

Pi: routing probability 



MODEL PARAMETERS 

¢ Using Lagrange multipliers methods, we 
obtained the routing probability as follows: 

¢ Private Cloud service rate 

¢ Public Cloud service rate 

13 

model, an important issue in any distributed system, thereby
making our model a cost/failure-aware model. Moreover, our
provisioning policies are based on non-observable queues that
do not require any information about the input queue of
either local cluster or public Clouds. Therefore, in contrast
to the work by Assunção et al. [5], our proposed policies are
independent of the scheduling algorithms.

IV. THE PROPOSED GENERIC RESOURCE PROVISIONING

As mentioned earlier, the resource provisioning policy in
the system under study has three steps: resource brokering,
dispatching, and scheduling of requests. In this section, we
assume n providers and propose a generic solution for the
three resource provisioning steps.

A. Adaptive Brokering Strategy
We formulate the problem of resource brokering similar to

that of routing in the distributed parallel queues [2], [10]. That
is, we consider each resource provider as one server with a
given service rate; a scheduler that serves as an input queue;
and a broker that redirects the incoming requests to one of the
providers as shown in Figure 2.

In the following subsection, the proposed brokering strategy
finds the routing probabilities. We assume that the broker lo-
cated in front of n heterogeneous multi-server parallel queues
routes the given requests to providers according to the routing
probabilities P

i

.
Requests arrive to the broker with a given distribution I ,

mean E[I] = ��1 and variance V [I] = �2
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. We assume the
broker holds no queues (we will elaborate on this assumption
in Section IV-B). Therefore, requests are handled immediately
by the broker upon arrival. Each resource provider is modeled
as a single queue with M
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nodes and a local scheduler.
Furthermore, we assume service time of queue i follows a
given distribution S
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with mean E[S
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and coefficient
of variance C

Si = �
Si · µi

.
Another aspect of the problem that must be taken into

account is the computing cost. While commercial Cloud is
made available in a pay-as-you-go manner, the computing cost
of local infrastructure usually is not easy to estimate, as it
depends on many issues such as life time, system utilization,
system technology, etc. However, ignoring the cost of a local
infrastructure and assuming the resources are free with respect
to the Cloud resources is unrealistic. There are some obvious
source of costs that can be considered, such as high start-up
costs for purchasing hardware or power and cooling costs.
Therefore, in this model, we associate a price, K

i

, to be
paid to each of provider i based on resource usage per time
unit. This parameter can be considered as the holding cost,
or weight per request per time unit at queue i. K

i

can be
defined as a constant value or a function of system parameters.
For example, in Amazon’s EC2, on-demand instances have
fixed price while Spot instances have variable price which is
a function of VM demand [1].

Considering the associated cost as well as response time
of the given requests for each resource provider, the objective

Fig. 2. Model of resource brokering for n providers.

function for the broker could be expressed as follows:

min
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]) (1)

where E[T
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] is the expected response time of requests served
at queue i and is described in the following.

Based on Figure 2, queue i has the mean inter-arrival time
E[I

i
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�)�1, so we can find its variance by Wald’s
equation [23] as follows:
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As mentioned before, queue i has the mean service time and
the coefficient of variance µ�1
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and �
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, respectively. As
the incoming requests have several VMs that potentially can
be as large as M

i

nodes, we model each provider with a single
server queue. By considering general distribution for the inter-
arrival time as well as the service time, each queue can be
modeled as a GI/GI/1 FCFS queue. Therefore, we are able
to approximate the expected response time of queue i by the
following equation2 [10]:
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where C2
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inter-arrival time at queue i, and can be calculated using
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Next, we apply Lagrange multipliers method to optimize
Equation (1) using E[T
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] from Equation (3) and assumingP
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= 1. The solution of this optimization gives the
routing probabilities P
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as follows:
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2There are several approximations for this queue in the literature, but we
choose one which is a good estimate for heavily loaded systems.

proposed model by Kleinrock et al. [14] to find the mean and
coefficient of variance of completion time for W time units
of work over M transient processors, as follows:
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Moreover, t
a

, t
u

, �2
a

and �2
u

are the mean and the variance of
availability and unavailability interval lengths, respectively.

As the input workload includes parallel requests (i.e. request
with several VMs), we consider the mean request size (W ) as
the given work to the system. We define the mean request size
by multiplying the mean number of VMs (V ) by the mean re-
quest duration (D). Hence, W = V ·D. These two parameters
are dependent on workload model (see Section VI-A).

By considering W time units of work over M
s

failure-
prone nodes, we define the service rate of the cluster queue as
the reciprocal value of the mean completion time for a given
workload as follows:

µ
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(12)

where ⌧
s

is the computing speed of the nodes in the local
cluster in terms of instruction per second, and L

s

is the time to
transfer the application (e.g. configuration file or input file(s))
to the cluster through the communication network. Another
required parameter is the coefficient of variance of the cluster’
service time (i.e. C

Ss ) which is nothing but Equation (9). This
makes our brokering strategy failure-aware and consequently
adaptive to the system’s failure pattern [13].

B. Runtime Model for Public Cloud

Although resource failures are inevitable, but public Cloud
providers employ efficient and expensive mechanisms to man-
age resource failures. These mechanisms are mainly based
on redundancy. Hence, public Cloud providers are usually
able to provide highly reliable services to their customers [1].
Therefore, we can use Normal distribution for the request
completion time in the Cloud. This can be justified by the
central limit theorem which assures that when summing many
independent random variables (here requests completion time),
the resulting distribution tends toward a Normal distribution.
So, the service rate of the Cloud queue can be found as the
reciprocal values of the mean request completion time for a
given workload on M

c

reliable nodes as follows:
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where ⌧
c

and L
c

are the computing speed and the time to
transfer the application to public Cloud provider, respectively.
It should be noted that the time to transfer output data to the
local cluster is not considered as it can be overlapped with
other computations. The coefficient of variance of the service
time can be assumed as one (i.e. C

Sc = 1) to model the
performance variability in public Cloud resources [20]. This
can be the minimum value for the coefficient of variance and
should be increased on the basis of variance in performance of
Cloud resources. Moreover, this is the parameter that should be
changed to adapt the proposed performance model for different
types of resources in a public Cloud provider (e.g. different
instances in Amazon’s EC2 [1]).

Apart from the brokering strategy, other two steps of re-
source provisioning can be directly used from Section IV. For
n = 2, X

c

= 1 and X
s

= 0 in the billiard scheme, for our
specific case.

VI. PERFORMANCE EVALUATION

In order to evaluate the performance of the proposed
policies, we implemented a discrete event simulator using
CloudSim [4]. We used simulation as experiments are repro-
ducible and the cost of conducting experiments on a real public
cloud would be prohibitively expensive.

The performance metrics related to response times of re-
quests that are considered in all simulation scenarios are
the Average Weighted Response Time (AWRT) [9] and the
bounded slowdown [8]. The AWRT for N given requests is
defined by the following equation:

AWRT =

P
N

j=1 dj · vj · (ctj � st
j

)
P

N

j=1 dj · vj
(14)

where v
j

is the number of virtual machines of request j. ct
j

is
the time of completion of the request and st

j

is its submission
time. The resource consumption (d

j

· v
j

) of each request j is
used as the weight. The AWRT measures the average time that
users must wait to have their requests completed. The bounded
slowdown metric, is defined as follows:
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where w
j

is the waiting time of request j. Also, bound is set
to 10 seconds to eliminate the effect of very short requests [8].

We evaluate the proposed policies against another basic pol-
icy, the No-Redirection policy. This is the simplest brokering
policy with the routing probability of the local cluster set to
one (P

s

= 1) and set to zero for Cloud (P
c

= 0). In this
policy, all requests run only on the failure-prone local cluster.

A. Workload Model
The workload model for evaluation scenarios is obtained

from the Grid Workload Archive [12]. We used the parallel job
model of the DAS-2 system which is a multi-cluster Grid [17].
Based on the workload characterization, the inter-arrival time,
request size, and request duration follow Weibull, two-stage
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with several VMs), we consider the mean request size (W ) as
the given work to the system. We define the mean request size
by multiplying the mean number of VMs (V ) by the mean re-
quest duration (D). Hence, W = V ·D. These two parameters
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is the time to
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to the cluster through the communication network. Another
required parameter is the coefficient of variance of the cluster’
service time (i.e. C

Ss ) which is nothing but Equation (9). This
makes our brokering strategy failure-aware and consequently
adaptive to the system’s failure pattern [13].

B. Runtime Model for Public Cloud

Although resource failures are inevitable, but public Cloud
providers employ efficient and expensive mechanisms to man-
age resource failures. These mechanisms are mainly based
on redundancy. Hence, public Cloud providers are usually
able to provide highly reliable services to their customers [1].
Therefore, we can use Normal distribution for the request
completion time in the Cloud. This can be justified by the
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the resulting distribution tends toward a Normal distribution.
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Sc = 1) to model the
performance variability in public Cloud resources [20]. This
can be the minimum value for the coefficient of variance and
should be increased on the basis of variance in performance of
Cloud resources. Moreover, this is the parameter that should be
changed to adapt the proposed performance model for different
types of resources in a public Cloud provider (e.g. different
instances in Amazon’s EC2 [1]).

Apart from the brokering strategy, other two steps of re-
source provisioning can be directly used from Section IV. For
n = 2, X
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= 1 and X
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= 0 in the billiard scheme, for our
specific case.

VI. PERFORMANCE EVALUATION

In order to evaluate the performance of the proposed
policies, we implemented a discrete event simulator using
CloudSim [4]. We used simulation as experiments are repro-
ducible and the cost of conducting experiments on a real public
cloud would be prohibitively expensive.

The performance metrics related to response times of re-
quests that are considered in all simulation scenarios are
the Average Weighted Response Time (AWRT) [9] and the
bounded slowdown [8]. The AWRT for N given requests is
defined by the following equation:
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= 1) and set to zero for Cloud (P
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= 0). In this
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from the Grid Workload Archive [12]. We used the parallel job
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where ⌘
i

can be calculated by the following equation:

⌘
i

= �(�2�2
I

+ �2 + C2
Si

� �µ
i

) (6)

Equation (5) reflects the effect of the system parameters as
well as computing costs on the routing probabilities leading
to a cost-aware brokering strategy. Moreover, the proposed
brokering strategy is based on non-observable queues which
means it does not need any information about the scheduler’s
queues. This simplifies implementation of the IGG in the
hybrid Cloud system.

B. Dispatch Sequences

The proposed adaptive brokering strategy in the previous
subsection determines only the routing probabilities (i.e. P

i

).
However, it does not explain any sequence for dispatching
the incoming requests to the resource providers. Here, we
consider two dispatch sequences including probabilistic and
deterministic methods to complete the second step of resource
provisioning.

Given the routing probabilities, one way to dispatch the
requests is using a Bernoulli distribution to randomly submit
the requests. In this case, the gateway only uses routing
probabilities without any special sequencing of requests sent
to providers. In this sense, this method is memoryless as it
does not take into account which requests have been sent to
which queues. We call this method Adaptive with Random
Sequence (ARS) policy.

In contrast, we also propose another method with deter-
ministic sequence, which considers the past sequence of dis-
patching with a very limited time overhead. This method, we
call as Adaptive with Deterministic Sequence (ADS) policy.
To generate the deterministic sequence, we used the Billiard
scheme [11], determined as follows.

Suppose a billiard ball bounces in an n-dimensional cube
where each side and opposite side are assigned by an integer
value in the range of {1, 2, ..., n}. Then, a deterministic billiard
sequence is generated by a series of integer values which
shows the sides hit by the ball when shot. In [11], the
authors proposed a method to generate the billiard sequence
as follows:

i
b

= min
8i

⇢
X

i

+ Y
i

P
i

�
(7)

where i
b

is the target queue, and X and Y are vectors of
integers with size n. X

i

reflects the fastest queue, and is set
to one for the fastest queue and zero for all other queues [2].
Y
i

keeps track of the number of requests that have been sent
to queue i and is initialized to zero. After finding the target
queue, it is updated as Y

ib = Y
ib + 1. P

i

is the fraction of
requests that are sent to queue i and is the same as the routing
probabilities obtained from Equation (5).

Based on the proposed methods for dispatching, the assump-
tion about the broker without a queue would be justifiable as
the broker has only a few computation operations to make
decision about target providers for incoming requests.

C. Scheduling Algorithms
The last step in the resource provisioning is scheduling of

request on the available VMs in the resource providers. For this
purpose, we utilize three well-known scheduling algorithms
conservative, aggressive, and selective backfilling [25]. With
conservative backfilling, each request is scheduled when it is
submitted to the system, and requests are allowed to leap
forward in the queue if they do not delay other queued
requests. In aggressive backfilling (EASY), only the request at
the head of the queue, called the pivot, is granted a reservation.
Other requests are allowed to move ahead in the queue as long
as they do not delay the pivot. Selective backfilling grants
reservation to a request when its expected slowdown exceeds
a threshold. This implies, the request has waited long enough
in the queue.

We assume that each VM runs on one available node. As
a given request needs all VMs to be available for the whole
required duration, any failure event in any virtual machine
would stop execution of the whole request. The request can
be started again, if and only if all VMs become available
again. If there is a resource failure during execution we apply
checkpointing [3] technique to resume execution of the request
from where it was interrupted. We incorporate checkpointing
in our scheduling algorithms and provide a fault-tolerant
environment for serving requests in the local cluster.

V. CASE STUDY: HYBRID CLOUD WITH TWO PROVIDERS

In this section, we adopt the results of Section IV for our
specific case where we have two providers (i.e. n = 2). We
use index i = s for the local cluster and i = c for the Cloud
hereafter. Moreover, we assume that there is computing speed
homogeneity within each provider. As mentioned earlier, the
proposed policies are part of the IGG (see Section II).

To apply the proposed analytical model for brokering strat-
egy, we first need to specify the arrival distribution I . The
arrival distribution I depends on the system workload and
could be given as a general distribution with light-tails [10].
As can be seen from Equation (3), the mean service time, µ

i

,
and coefficient of variance, C

Si are two unknown parameters.
Therefore, in the following, we determine µ

s

and C
Ss for

the local cluster and µ
c

and C
Sc for Cloud to obtain the

corresponding routing probabilities by Equation (5).

A. Runtime Model for Local Cluster
The distribution of service time in each provider depends

on the characteristics of the infrastructure as well as the input
workload. Moreover, in our analysis in Section IV, relative
response times are more important than absolute response
times. The reason is that scaling up or down of the service
times in Equation (1) does not change the routing probabilities.

Since we assume the local cluster is failure-prone, we must
consider the availability and unavailability intervals of each
resource to find out the service time distribution. We term the
continuous period of a service outage due to a failure as an
unavailability interval. A continuous period of availability is
called an availability interval. For this purpose, we use the
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gateway to manage and monitor resources such as Java applications. The
Communication Module provides an asynchronous message-passing mecha-
nism, and received messages are handled in parallel by a thread-pool. That
makes gateway loosely coupled and allows for more failure-tolerant commu-
nication protocols.

Figure 3 shows the main interactions in the system when the user sends
a request to the DVE manager. The local IGG tries to obtain resources
from the underlying VIEs. This is the point where the IGG must make
decision about selecting resource provider to supply the user’s request, so
the resource provisioning policies come to the picture. As it can be seen in
Figure 3, the request is redirected to the remote IGG to get the resource from
the public Cloud provider (i.e., Amazon’s EC2). Once the IGG has allocated
the requested VMs, it makes them available and the DVE manager will be
able to access the VMs and finally deploy the user’s application.

4.3. Fault-Tolerant Scheduling Algorithms

As depicted in Figure 4, we need an algorithm for scheduling the requests
for the private and public Clouds. For this purpose, we utilize a well-known
scheduling algorithm for parallel requests, which is called selective backfill-
ing [33]. Backfilling is a dynamic mechanism to identify the best place to
fit the requests in the scheduler queue. In other words, Backfilling works
by identifying hole in the processor-time space and moving forward smaller
requests that fit those holes. Selective backfilling grants reservation to a
request when its expected slowdown exceeds a threshold. That means, the
request has waited long enough in the queue. The expected slowdown of a
given request is also called eXpansion Factor (XFactor) and is given by the
following equation:

XFactor =
Wi + Ti

Ti

(7)

where Wi and Ti is the waiting time and the run time of request i, respec-
tively. We use the Selective-Di↵erential-Adaptive scheme proposed in [33],
which lets the XFactor threshold to be the average slowdown of previously
completed requests. It has been shown that selective backfilling outperforms
other types of backfilling algorithms [33].

We used another scheduling algorithm, aggressive backfilling [41], in our
experiments as the base algorithm. In the aggressive backfilling (EASY),
only the request at the head of the queue, called the pivot, is granted a
reservation. Other requests are allowed to move ahead in the queue as long

14
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than S, otherwise the request will be serviced using resources
in the private Cloud.

C. Time-based Strategy

In addition to spatial correlation, failure events are often
correlated in the time domain which can result in a skewing
of the failure distribution over time [12]. As a result, the failure
rate is time-dependent and some periodic failure patterns
can be observed in different time-scales [36]. The longer
requests mainly affected by this temporal correlation since
these requests stay longer in the system and are likely to have
more failures. So, again there is a strong relation between
down time and the request duration. On the other hand, in
the real distributed systems, request duration (job runtime) are
long tailed [8], [28]. This means that a very small fraction of
all requests are responsible for the main part of the load.

The time-based strategy offers an efficient technique to solve
both above mentioned properties. We use the mean request
duration as the decision point for the gateway to redirect the
incoming requests to the Cloud providers. In other words, if
the request duration is less than or equal to the mean request
duration, the request will be run using local resources. By
this technique, the majority of short requests could meet the
workload deadline as they are less likely to encounter failures.
Moreover, longer requests will be served by more reliable
public Cloud provider resources where they can meet the
deadline under enhanced resource availability.

The mean request duration can be obtained from the fitted
distribution of the workload model. For instance, the request
duration of the parallel workloads in DAS-2 multi-cluster
system is the Lognormal distribution with parameters µ,�,
so the mean value is given as follows [22]:

T = eµ+
�2

2 (5)

The redirection strategy submits requests to the public Cloud
provider if the duration of request is greater than T , otherwise
will be serviced using local resources. Another advantage of
this strategy is better utilization of the Cloud resources. For
example with Amazon’s EC2, if a request uses a VM for less
than one hour, the cost of one hour must be paid. So, when
we redirect long requests to the public Cloud provider, this
waste of money will be minimized.

D. Area-based Strategy

The two aforementioned strategies are based on the only
one aspect of the request: number of VMs (S) or duration
(T ). A third strategy aimed at making a compromise between
the size-based and time-based strategy. Here we utilize the
area of a request as the decision point for the gateway - this
is given as the rectangle with length T and width S. Using
this model, we are able to calculate the mean request area by
multiplying the mean number of VMs by the mean request
duration, as follows:

A = T · S (6)

The redirection strategy submits requests to the public Cloud
provider if the area of the request is greater than A, otherwise
these requests will be serviced using local resources. This
strategy sends long and wide requests to the public Cloud,
so it would be more conservative than a size-based strategy
and less conservative than a time-based strategy.

E. Scheduling Algorithms
As described before, a resource provisioning policy consists

of a brokering strategy as well as an algorithm for scheduling
the requests across private and public Cloud resources. Based
on this, we utilize two well-know algorithms: conservative
[26] and selective backfilling [35]. With conservative back-
filling, each request is scheduled when it is submitted to
the system, and requests are allowed to leap forward in the
queue if they do not delay other queued requests. Selective
backfilling grants reservations to a request when its expected
slowdown exceeds a threshold, i.e., where the request has
waited long enough in the queue. The expected slowdown
of a given request is also called eXpansion Factor and can
be given as XFactor = Wi+Ti

Ti
, where Wi and Ti are the

waiting time and the run time of request i, respectively. We use
the Selective-Differential-Adaptive scheme proposed in [35],
which lets the XFactor threshold be the average slowdown of
previously completed requests.

After submitting requests to the scheduler, each VM runs on
one available node. In the case of resource failure during the
execution, we assume checkpointing so that the application is
started from where it left off when the node becomes available
again. The checkpointing issues are not in the scope of this
research and interested readers should refer to [3] to see how
checkpoint overheads and periods can be computed base on
the associated failure model.

IV. PERFORMANCE EVALUATION

In order to evaluate the performance of proposed poli-
cies, we implemented a discrete event simulator using
CloudSim [4]. We used simulation as experiments are repro-
ducible and the cost of conducting experiments on real public
Cloud resources would be prohibitively expensive.

The performance metrics which are considered in all sim-
ulation scenarios are the violation rate and the bounded
slowdown [9]. The violation rate is the fraction of requests
that do not meet a given deadline. The bounded slowdown for
the M requests is defined as:

Slowdown =
1

M

MX

i=1

Wi +max(Ti, bound)

max(Ti, bound)
(7)

where bound is set to 10 seconds to eliminate the effect of
very short requests [9].

To compute the cost of using resources from a public Cloud,
we use the amounts charged by Amazon to run basic virtual
machines and network usage at EC2. The cost of using EC2
for policy pl can be calculated as follows:

Costpl = (Hpl +Mpl ·Hu)Cn + (Mpl ·Bin)Cx (8)

than S, otherwise the request will be serviced using resources
in the private Cloud.

C. Time-based Strategy

In addition to spatial correlation, failure events are often
correlated in the time domain which can result in a skewing
of the failure distribution over time [12]. As a result, the failure
rate is time-dependent and some periodic failure patterns
can be observed in different time-scales [36]. The longer
requests mainly affected by this temporal correlation since
these requests stay longer in the system and are likely to have
more failures. So, again there is a strong relation between
down time and the request duration. On the other hand, in
the real distributed systems, request duration (job runtime) are
long tailed [8], [28]. This means that a very small fraction of
all requests are responsible for the main part of the load.

The time-based strategy offers an efficient technique to solve
both above mentioned properties. We use the mean request
duration as the decision point for the gateway to redirect the
incoming requests to the Cloud providers. In other words, if
the request duration is less than or equal to the mean request
duration, the request will be run using local resources. By
this technique, the majority of short requests could meet the
workload deadline as they are less likely to encounter failures.
Moreover, longer requests will be served by more reliable
public Cloud provider resources where they can meet the
deadline under enhanced resource availability.

The mean request duration can be obtained from the fitted
distribution of the workload model. For instance, the request
duration of the parallel workloads in DAS-2 multi-cluster
system is the Lognormal distribution with parameters µ,�,
so the mean value is given as follows [22]:

T = eµ+
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2 (5)

The redirection strategy submits requests to the public Cloud
provider if the duration of request is greater than T , otherwise
will be serviced using local resources. Another advantage of
this strategy is better utilization of the Cloud resources. For
example with Amazon’s EC2, if a request uses a VM for less
than one hour, the cost of one hour must be paid. So, when
we redirect long requests to the public Cloud provider, this
waste of money will be minimized.

D. Area-based Strategy

The two aforementioned strategies are based on the only
one aspect of the request: number of VMs (S) or duration
(T ). A third strategy aimed at making a compromise between
the size-based and time-based strategy. Here we utilize the
area of a request as the decision point for the gateway - this
is given as the rectangle with length T and width S. Using
this model, we are able to calculate the mean request area by
multiplying the mean number of VMs by the mean request
duration, as follows:

A = T · S (6)

The redirection strategy submits requests to the public Cloud
provider if the area of the request is greater than A, otherwise
these requests will be serviced using local resources. This
strategy sends long and wide requests to the public Cloud,
so it would be more conservative than a size-based strategy
and less conservative than a time-based strategy.

E. Scheduling Algorithms
As described before, a resource provisioning policy consists

of a brokering strategy as well as an algorithm for scheduling
the requests across private and public Cloud resources. Based
on this, we utilize two well-know algorithms: conservative
[26] and selective backfilling [35]. With conservative back-
filling, each request is scheduled when it is submitted to
the system, and requests are allowed to leap forward in the
queue if they do not delay other queued requests. Selective
backfilling grants reservations to a request when its expected
slowdown exceeds a threshold, i.e., where the request has
waited long enough in the queue. The expected slowdown
of a given request is also called eXpansion Factor and can
be given as XFactor = Wi+Ti

Ti
, where Wi and Ti are the

waiting time and the run time of request i, respectively. We use
the Selective-Differential-Adaptive scheme proposed in [35],
which lets the XFactor threshold be the average slowdown of
previously completed requests.

After submitting requests to the scheduler, each VM runs on
one available node. In the case of resource failure during the
execution, we assume checkpointing so that the application is
started from where it left off when the node becomes available
again. The checkpointing issues are not in the scope of this
research and interested readers should refer to [3] to see how
checkpoint overheads and periods can be computed base on
the associated failure model.

IV. PERFORMANCE EVALUATION

In order to evaluate the performance of proposed poli-
cies, we implemented a discrete event simulator using
CloudSim [4]. We used simulation as experiments are repro-
ducible and the cost of conducting experiments on real public
Cloud resources would be prohibitively expensive.

The performance metrics which are considered in all sim-
ulation scenarios are the violation rate and the bounded
slowdown [9]. The violation rate is the fraction of requests
that do not meet a given deadline. The bounded slowdown for
the M requests is defined as:

Slowdown =
1

M

MX

i=1

Wi +max(Ti, bound)

max(Ti, bound)
(7)

where bound is set to 10 seconds to eliminate the effect of
very short requests [9].

To compute the cost of using resources from a public Cloud,
we use the amounts charged by Amazon to run basic virtual
machines and network usage at EC2. The cost of using EC2
for policy pl can be calculated as follows:

Costpl = (Hpl +Mpl ·Hu)Cn + (Mpl ·Bin)Cx (8)

TABLE I
INPUT PARAMETERS FOR THE WORKLOAD MODEL

Input Parameters Distribution/Value
Inter-arrival time Weibull (↵ = 23.375, 0.2  �  0.3)

No. of VMs Loguniform (l = 0.8,m, h = log2Ns, q = 0.9)
Request duration Lognormal (2.5  µ  3.5,� = 1.7)

P1 0.02
P2 0.78

where Hpl is the Cloud usage per hour for the policy pl. That
means, if a request uses a VM for 45 minutes for example,
the cost of one hour is considered. Mpl is the fraction of
requests which are redirected to the public Cloud. Hu is the
startup time for initialization of operating systems on a VM
which is set to 80 seconds [29]. We take into account this
value as Amazon commences charging users when the VM
process starts. Bin is the amount of data which needs to be
transferred to the Amazon EC2 for each request. This is set to
100 MB per request. The cost of one specific instance on the
EC2 is determined as Cn and considered as 0.085 USD per
VM per hour for a small instance. The cost of data transfer to
the Amazon EC2 is also considered as Cx which is 0.1 USD
per GB. It should be noted that we consider a case where
requests’ output are very small and can be transferred to the
local resources for free [1].

A. Experimental Setup

Considering workflow applications in the AURIN project
as the parallel applications, we used the parallel job model
of the DAS-2 system which is a multi-cluster Grid [22] as
the workload model for evaluation scenarios. Based on the
workload characterization, the inter-arrival time (based on
Weibull distribution), the request size (based on Loguniform
distribution), and the request duration (based on Lognormal
distribution). These distributions with their parameters are
listed in Table I.

For each simulation experiment, statistics were gathered for
a two-month long period of DAS-2 workloads. The first week
of workloads during the warm-up phase were ignored to avoid
bias before the system reached a steady-state. Each data point
represents the average of 30 simulation rounds. The number
of resources in the private and the public Cloud were set
equally to Ns = Nc = 64 with a homogeneous computing
speed of 1000 MIPS6. The time to transfer the application
(e.g., configuration file or input file(s)) for the private Cloud is
negligible as the local resources are interconnected by a high-
speed network, so Ls = 0. However, to execute the application
on the public Cloud we must send the configuration file as well
as input file(s). Given this, we consider a network transfer time
of Lc = 80 sec., which is the time to transfer of 100 MB data
on a 10 Mbps network connection.

The failure trace for the experiments is obtained from the
Failure Trace Archive [20]. We used the failure trace of a
cluster in the Grid’5000 with 64 nodes for a duration of 18

6This assumption is made just to focus on performance degradation due to
failure.

months, which includes on average 800 events per node. The
average availability and unavailability time in this trace archive
is 22.26 hours and 10.22 hours respectively.

In order to generate different workloads, we systematically
modified three parameters of the workload model. To change
the inter-arrival time, we modified the second parameter of
the Weibull distribution (the shape parameter �) as shown in
Table I. To have requests with different durations, we changed
the first parameter of the Lognormal distribution between 2.5
and 3.5 as described in Table I. Moreover, we also varied
the middle point of the Loguniform distribution (i.e., m) to
generate workloads with different number of VMs per request
where m = h�! and ! is between 1.5 to 3.3. Thus the larger
value of !, the fewer VMs required to service requests. The
same scheduling algorithms are used for the private and public
Cloud providers in all scenarios.

To generate the request deadlines we utilize the same
techniques given in [18], which provide a feasible schedule for
jobs. To obtain deadlines, we conducted experiments based on
scheduling requests on local resources without failure events
using aggressive backfilling. We used the following equations
to calculate the deadline for each request i:

di =

(
sti + (f · tai), if [sti + (f · tai)] < cti

cti, otherwise
(9)

where sti is the request’s submission time, cti is its completion
time, tai is the request’s turn around time (i.e., cti � sti).
We define f as a stringency factor that indicates how urgent
deadlines are. If f = 1, then the request’s deadline is uses
an aggressive backfilling scenario to ensure completion. We
evaluate strategies with different stringency factors, however
only report results where f = 1.3 (i.e., a normal deadline).

B. Results and discussions
The results of simulating violation rates versus different

workloads are depicted in Figure 3 for different provisioning
policies. In each figure, three brokering strategies are plotted
for a scheduling algorithm. In all the figures, Size, Time, and
Area refer to size-based, time-based and area-based broker-
ing strategies, respectively. Moreover, CB and SB stand for
Conservative and Selective Backfilling, respectively.

Based on Figure 3, by increasing the workload intensity
(i.e., arrival rate, duration or size7 of requests), we observe
an increase in the violation rate for all provisioning policies.
As illustrated in this figure, the size-based brokering strategy
yields a very low violation rate where the area-based strat-
egy also shows a comparable performance. The time-based
strategy has the worst performance in terms of violation rate
especially when the workload intensity increases.

It is worth noting that the violation rate of size-based broker-
ing strategy, in contrast to others, has an inverse relation with
the request size, i.e., we observe an increase in the number
of fulfilled deadlines by reducing the size of requests. This
behavior is due to increasing the number of redirected requests

7The larger value of !, the fewer VMs required to service requests.
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TABLE I
INPUT PARAMETERS FOR THE WORKLOAD MODEL

Input Parameters Distribution/Value
Inter-arrival time Weibull (↵ = 23.375, 0.2  �  0.3)

No. of VMs Loguniform (l = 0.8,m, h = log2Ns, q = 0.9)
Request duration Lognormal (2.5  µ  3.5,� = 1.7)

P1 0.02
P2 0.78

where Hpl is the Cloud usage per hour for the policy pl. That
means, if a request uses a VM for 45 minutes for example,
the cost of one hour is considered. Mpl is the fraction of
requests which are redirected to the public Cloud. Hu is the
startup time for initialization of operating systems on a VM
which is set to 80 seconds [29]. We take into account this
value as Amazon commences charging users when the VM
process starts. Bin is the amount of data which needs to be
transferred to the Amazon EC2 for each request. This is set to
100 MB per request. The cost of one specific instance on the
EC2 is determined as Cn and considered as 0.085 USD per
VM per hour for a small instance. The cost of data transfer to
the Amazon EC2 is also considered as Cx which is 0.1 USD
per GB. It should be noted that we consider a case where
requests’ output are very small and can be transferred to the
local resources for free [1].

A. Experimental Setup

Considering workflow applications in the AURIN project
as the parallel applications, we used the parallel job model
of the DAS-2 system which is a multi-cluster Grid [22] as
the workload model for evaluation scenarios. Based on the
workload characterization, the inter-arrival time (based on
Weibull distribution), the request size (based on Loguniform
distribution), and the request duration (based on Lognormal
distribution). These distributions with their parameters are
listed in Table I.

For each simulation experiment, statistics were gathered for
a two-month long period of DAS-2 workloads. The first week
of workloads during the warm-up phase were ignored to avoid
bias before the system reached a steady-state. Each data point
represents the average of 30 simulation rounds. The number
of resources in the private and the public Cloud were set
equally to Ns = Nc = 64 with a homogeneous computing
speed of 1000 MIPS6. The time to transfer the application
(e.g., configuration file or input file(s)) for the private Cloud is
negligible as the local resources are interconnected by a high-
speed network, so Ls = 0. However, to execute the application
on the public Cloud we must send the configuration file as well
as input file(s). Given this, we consider a network transfer time
of Lc = 80 sec., which is the time to transfer of 100 MB data
on a 10 Mbps network connection.

The failure trace for the experiments is obtained from the
Failure Trace Archive [20]. We used the failure trace of a
cluster in the Grid’5000 with 64 nodes for a duration of 18

6This assumption is made just to focus on performance degradation due to
failure.

months, which includes on average 800 events per node. The
average availability and unavailability time in this trace archive
is 22.26 hours and 10.22 hours respectively.

In order to generate different workloads, we systematically
modified three parameters of the workload model. To change
the inter-arrival time, we modified the second parameter of
the Weibull distribution (the shape parameter �) as shown in
Table I. To have requests with different durations, we changed
the first parameter of the Lognormal distribution between 2.5
and 3.5 as described in Table I. Moreover, we also varied
the middle point of the Loguniform distribution (i.e., m) to
generate workloads with different number of VMs per request
where m = h�! and ! is between 1.5 to 3.3. Thus the larger
value of !, the fewer VMs required to service requests. The
same scheduling algorithms are used for the private and public
Cloud providers in all scenarios.

To generate the request deadlines we utilize the same
techniques given in [18], which provide a feasible schedule for
jobs. To obtain deadlines, we conducted experiments based on
scheduling requests on local resources without failure events
using aggressive backfilling. We used the following equations
to calculate the deadline for each request i:

di =

(
sti + (f · tai), if [sti + (f · tai)] < cti

cti, otherwise
(9)

where sti is the request’s submission time, cti is its completion
time, tai is the request’s turn around time (i.e., cti � sti).
We define f as a stringency factor that indicates how urgent
deadlines are. If f = 1, then the request’s deadline is uses
an aggressive backfilling scenario to ensure completion. We
evaluate strategies with different stringency factors, however
only report results where f = 1.3 (i.e., a normal deadline).

B. Results and discussions
The results of simulating violation rates versus different

workloads are depicted in Figure 3 for different provisioning
policies. In each figure, three brokering strategies are plotted
for a scheduling algorithm. In all the figures, Size, Time, and
Area refer to size-based, time-based and area-based broker-
ing strategies, respectively. Moreover, CB and SB stand for
Conservative and Selective Backfilling, respectively.

Based on Figure 3, by increasing the workload intensity
(i.e., arrival rate, duration or size7 of requests), we observe
an increase in the violation rate for all provisioning policies.
As illustrated in this figure, the size-based brokering strategy
yields a very low violation rate where the area-based strat-
egy also shows a comparable performance. The time-based
strategy has the worst performance in terms of violation rate
especially when the workload intensity increases.

It is worth noting that the violation rate of size-based broker-
ing strategy, in contrast to others, has an inverse relation with
the request size, i.e., we observe an increase in the number
of fulfilled deadlines by reducing the size of requests. This
behavior is due to increasing the number of redirected requests

7The larger value of !, the fewer VMs required to service requests.

TABLE I
INPUT PARAMETERS FOR THE WORKLOAD MODEL.

Parameters Distribution/Value

Inter-arrival time Weibull (↵ = 23.375, 0.2  �  0.3)
No. of VMs Loguniform (l = 0.8,m = 3.5, h = 6, q = 0.9)

Request duration Lognormal (2.5  ✓  3.5,� = 1.7)
P
one

0.02
P
pow2 0.78

Loguniform and Lognormal distributions, respectively. These
distributions with their parameters are listed in Table I. It
should be noted that the number of VMs in the request
can be scaled to the system size (e.g. M nodes) by setting
h = log2M .

To find the mean number of VMs per request, we need
the probability of different number of VMs in the incoming
requests. Assume that P

one

and P
pow2 are probabilities of

request with one VM and power of two VMs in the workload,
respectively. Therefore, the mean number of VMs required by
requests is given as follows:

V = P
one

+ 2dre(P
pow2) + 2r (1� (P

one

+ P
pow2)) (16)

where r is the mean value of the two-stage uniform distribution
with parameters (l,m, h, q) as listed in Table I and can be
found as follows:

r =
ql +m+ (1� q)h

2
(17)

Additionally, the mean request duration is the mean value
of the Lognormal distribution with parameters (✓,�) which is
given by:

D = e✓+
�2

2 (18)

B. Experimental Setup
For each simulation experiment, statistics were gathered

for a two-month period of the DAS-2 workloads. The first
week of workloads during the warm-up phase were ignored
to avoid bias before the system reached steady-state. In our
experiments, the results of simulations are accurate within a
confidence level of 95%.

The number of resources in the local cluster and Cloud is
equal to M

s

= M
c

= 64 with homogeneous computing speed3

(i.e. ⌧
s

= ⌧
c

= 1000 MIPS). Moreover, the cost of resources
in the Cloud is considered to be five times more expensive
than the local cluster’s resources (i.e. K

s

= 1, K
c

= 5).
The network transfer time of the cluster is negligible as the
local resources are interconnected by a high-speed network,
L
s

= 0. However, to execute the application on the public
Cloud we must send the configuration file as well as input
file(s). Therefore, we consider the network transfer time as
L
c

= 64 sec., which is the time to transfer 80 MB data4 on a
10 Mbps network connection.

3This assumption is made just to focus on performance degradation due to
failure.

4This is the maximum amount of data for a real scientific workflow
application [22].

TABLE II
INPUT PARAMETERS FOR THE FAILURE MODEL.

Parameters Description Value (hours)

t
a

Mean availability length 22.25
�
a

Std of availability length 41.09
t
u

Mean unavailability length 10.22
�
u

Std of unavailability length 40.75

The failure trace for the experiments is obtained from the
Failure Trace Archive [15]. We used the failure trace of a
cluster in the Grid’5000 with 64 nodes for duration of 18
months, which includes on average 795 failure events per
node. The parameters for the failure model of Grid’5000
are listed in Table II (see [15] for more details). Also, each
experiment utilizes a unique starting point in the failure traces
to avoid bias results.

In order to generate different synthetic workloads, we
modified two parameters of the workload model, one at a
time. To change the inter-arrival time, we modified the second
parameter of the Weibull distribution (the shape parameter �)
as shown in Table I. Also, to have requests with different
duration, we changed the first parameter of the Lognormal
distribution between 2.5 and 3.5 which is mentioned in Table I.

To compute the cost of using resources from a Cloud
provider, we use the amounts charged by Amazon to run basic
virtual machines and network usage at EC2. For the total of N
requests which are submitted to the system, the cost of using
EC2 can be calculated as follows:

C
EC2 = (H

c

+N · P
c

·H
u

)C
p

+ (N · P
c

·B
in

)C
x

(19)

where H
c

is the total Cloud usage per hour. This implies, if a
request uses a VM for 40 minutes for example, the cost of one
hour is considered. N ·P

c

is the fraction of requests which are
redirected to the public Cloud. Also, H

u

is the startup time for
initialization of operating system on a virtual machine which
is set to 80 seconds [20]. We take into account this value
as Amazon commences charging users when the VM process
starts. B

in

is the amount of data which transfer to Amazon
EC2 for each request and as it is mentioned before, it is 80
MB per request. The cost of one specific instance on EC2
(us-east) is determined as C

p

and considered as 0.085 USD
per virtual machine per hour for a small instance. The cost of
data transfer to Amazon EC2 is also considered as C

x

which is
0.1 USD per GB 5. It should be noted that we consider a case
where requests’ output are very small and can be transfered
to the local cluster for free [1].

C. Results and discussions
In this section, NoR, ARS, and ADS refer to the No-

Redirection, Adaptive with Random Sequence, and Adaptive
with Deterministic Sequence, respectively. Moreover, CB, SB,
and EB stand for Conservative, Selective and EASY Backfill-
ing, respectively. The same scheduling algorithms are used for
the local cluster and Cloud in all scenarios.

5All prices obtained at time of writing this paper.



SIMULATION RESULTS  

¢ Violation rate (knowledge-free policies) 
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SIMULATION RESULTS (CONT.) 

¢ Cloud Cost on EC2 (knowledge-free policies) 
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SIMULATION RESULTS (CONT.) 

¢ Slowdown (Knowledge-based policies) 
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Request arrival rate (SB) Request arrival rate (CB) 
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FAILURE TRACE ARCHIVE (FTA) 

¢  27 Failure Traces 
�  Supercomputers, HPC, Grid, P2P 

¢ FTA Format 
¢ Simulator and Scripts 

21 http://fta.scem.uws.edu.au/ 



CONCLUSIONS 

¢ Adaptive resource provisioning in a failure-prone 
hybrid Cloud system 

¢ Flexible brokering strategies based on failure 
correlation/model as well as workload model 

¢  Improve performance of hybrid Cloud 
�  Knowledge-free approach: 32% in terms of deadline 

violation and 57% in terms of slowdown while using 
135$/month on EC2 

�  Knowledge-based approach: 4.1 times in terms of 
response time while using 1200$/month on EC2 
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OPEN QUESTIONS 

¢ Recourse Failures vs. Energy Consumption for 
Cloud Systems 
�  How they are related? 

¢ Reliability-as-a-Service (RaaS)  in Cloud 
Computing 
�  Providing reliability on demand based on the users’ 

requirements (e.g., Amazon Spot Instances) 

¢ Cost Model for Resource Failures in Cloud 
Systems 
�  Repair …. Replacement 
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