
Fault-aware Scheduling in Grid Environment based on Linear Programming

Mehdi Sarikhani, Bahman Javadi, Askari Parichehre
Islamic Azad University of Qazvin, Iran

Sarikhani.mehdi@Gmail.com
Javadi@aut.ac.ir

apmastermail@gmail.com

POSTER PAPER

ABSTRACT

Grid system provides the sharing, selection and
aggregation on distributed autonomous resources while it
is an error prone environment. So, grid component like
scheduler must provide the user‘s Quality of Service
(QoS) requirements by selecting the appropriate
resources for user’s jobs. In this paper, we have proposed
a fault-aware economy scheduling model based on binary
integer programming (FES-BIP) to allocate resources to
application jobs such that the users’ requirements are met
while we know the distribution of resource failure in the
grid environment. FES-BIP algorithm guarantees optimal
resource selection.

KEYWORDS: Quality of Service, economy model,
fault-aware scheduling, binary integer programming.

1. INTRODUCTION

Grid becomes more and more popular in large-scale
computing, because they enable the sharing of computing
resources that are autonomous resources and distributed
throughout the world. We assume the market-based grid
should consider the economy factors as a QoS user
requirement. In market-based mechanisms, time, cost, and
number of Processing Elements (PE) which a user needs
are the important QoS factors. Consequently, the
scheduling algorithms try to meet QoS factors and to
optimize these factors. Grids are more error prone than
traditional parallel machines as there are potentially
thousands of resources that are heterogeneous and sharing
among various applications [12]. So fault tolerance is an
important characteristic in grid as the dependability of
individual grid resources may not be guaranteed and

resources are autonomous. It becomes increasingly
difficult to guarantee that a resource being used is not
malicious in some way [17]. So providing appropriate
resource selection is vital to use grid systems perfectly.
Also resource selection and scheduling in grid
environment is always a controversial subject especially
when fault tolerant scheduling is crucial due to the lots of
failure. Therefore, the fault tolerant scheduling based on
economic factors is so complicated (NP-hard) and finding
the optimal answer is so difficult. There are several
approaches to deal with scheduling but one of the best
approaches to prove the scheduling result which is
affirmative and optimal is using mathematical model and
especially linear programming model. So by modeling
fault-aware scheduling system which can provide optimal
scheduling results, the scheduler can meet the user‘s QoS
requirement and prepare fault tolerant grid resource.
Albeit linear programming scheduling model has been
used in previous works to solve scheduling problems, all
of them work only on resource and job but obviously such
models cannot prepare a real grid model[9][10]. Because
they have to assume that all resource PEs has same cost
and computational power. They can’t take any decision
about the tasks of jobs, in particular about the length of
tasks and have to take all tasks with the same length. So it
is crucial to put another parameter into model which is the
resource PEs information, having assumed that the
number of PEs in each resource (machine) and cost of
each PE per second is possible. Our proposed scheduling
algorithm by adding such information about PEs of
resource on economy grid meet requirement of the time,
cost, and number of PEs which users need. In addition it
optimizes the cost and ensures reliability.

 The rest of the paper is organized is as follows. In section
2, we review some related works. In section 3, we put
forward our linear programming model. In section 4, we

978-1-4244-6829-4/10/$26.00 ©2010 IEEE 656

proposed the algorithm to solve the problem. We present
the experiments and discuss the results in section 5.
Finally, we conclude the paper and outline future lines of
investigation.

2. RELATED WORK

Because the scheduling algorithms are dominant parts of
grids environment, there are lots of algorithms which
have been proposed in this area of research.

 The scheduling algorithm can be divided in to two broad
categories of knowledge-free and knowledge-based
approach [6]. Canonico [6] in his knowledge-based
approach took 3 states of information for scheduling
which is availability awareness, computational power or
both of them. Further, he used replication and checkpoint
to provide fault tolerant scheduling. Fault-aware
scheduling is one kind of knowledge-based scheduling
which Verboven, Lan and Sun used. Verboven [19]
recommended a two-phased fault-aware scheduling
strategy, which are firstly dispatches the job to resources
when the resource up-time is more than job execution
time until all resource queue have just one job. In second
phase, all resources are ordered according to the amount
of computing time which is left, then that job is assigned
to a resource with lowest remaining execution time while
it’s up-time is more than approximate execution time.
Similarly, Lan [12] proposed a failure-aware resource
selection framework which is intended to identify an
optimal resource for a given application by considering
the reliability characteristics of the available resources.
He contends that an intelligent resource selection can save
tremendous overhead that may be introduced by job
migration or rescheduling after job allocation. So he sets
forh a resource selection framework which on the basis a
special formula calculates the minimum expected job
completion time on all resources. At the end, it selects the
resource that provides the minimum expected job
completion time. A similar fault-aware structure that has
three important parts including fault prediction, fault
management, and system support which evaluate the time
completion and execution of jobs by some probability
equations was presented by Sun [18].

A scheduler’s strategy varies according to time of job
dispatching. As such we have two varies of job
dispatching time, namely, immediate and batch mode. In
the immediate mode, a task is assigned to a resource as
soon as it arrives at the scheduler and this decision will
not change once it is computed. On the contrary, in the
batch mode, tasks are not mapped onto the resources as
they arrive. Instead, they are collected into a set and the
scheduler computes some parameters as a pre-scheduling
step. Some classical scheduling algorithms are based on

these two categories as presented by Maheswaran [14].
As regards the immediate mode there are several
algorithms such as first-come-first-service, minimum
completion time, minimum execution time, switching
algorithm, k-percent best and opportunistic load
balancing. Concerning batch mode we have Min-Min,
Max-Min and Suffrage types [14].
 Another strategy for grid scheduling is using replication
and checkpoint which utilizes a lot in traditional
distributed systems. Nazir [16], for example, applied fault
tolerant job scheduling by keeping the history of
resources. For resources that had several failures in their
previous jobs and according to the number of failures the
scheduler took some checkpoints. Anglano [2] also by
adding replication and checkpoint to work queue
algorithm presented WQR-FT algorithm that by taking
checkpoint on replica of task and restarting from last
checkpoint and producing a replica when another replica
failed, improved WQR algorithm. Divide-and-conquer is
another approach that divides a job into smaller tasks until
it can solve these smaller tasks more easily, so at the time
of task failure, it can redo these tasks. Owing to the fact
that these tasks are smaller the redundant computation is
also smaller. In addition, by storing partial results, this
approach can be improved [20].

The market-based or economy-based model in grid is a
very applicable approach. The market-based grid should
consider the economy factors as a QoS user requirement.
There are a number of market-based models which can be
used in grid environment such as the commodity market,
the posted price, the bargaining, the tendering/contract-
net, the auction, the bid-based proportional resource
sharing, the community / coalition / bartering and the
monopoly/oligopoly model [3]. Deadline and budget are
the most common economy factors as QOS user
requirements. There are several algorithms for
minimizing the cost, time or both of them. Venugopal
[18] presented an scheduling algorithm for distributed
data intensive Bag-of-Task applications using a deadline
and budget constraint. This algorithm built a resource set
for a job that minimized the cost or time based on the
user’s request.

A scheduling is an NP-hard in which finding an optimal
result is of import. In this regards, genetic algorithm is the
one which can serve the propose of finding such an
optimal result. For example, Lee [13] introduces the
architecture of fault detector, fault manager and resource
manager which used a genetic algorithm to select the
optimal result. The scheduling approach which similarly
can prove the optimality of scheduling result while has
not the problems of genetic algorithm, however, suffers
from the problem of large search space and huge time
consumption. As such, linear programming can be offered

657

as an alternative to find the optimal result of scheduling
which has been proved not to the aforementioned
problems. There have been a number of studies in
literature which have utilized linear programming in their
approach to scheduling. For example, Dogan [8], Garg
[10], Feng [9] all used linear programming. But they were
limited on way or another. Dagan’s [8] used meta
scheduling algorithm to achieve optimal solution in
scheduling problems. However it was limitation in the
sense that his modeling rested on the assumption of one
task for each independent application with many
concurrent users. Although Feng [9] could provide a cost
and time optimization by combining time and cost as
optimization parameter, the approach taken to
combination of these two variables does not appear to be
legitimate. In a similar vein, Garg [10] proffered a linear
programming cost model which is for space and time
share resources. However, his heuristic solution to solve
the linear programming was based on the limited
assumption that all PE resources have same cost and
computational power and that all tasks have the same
length. In addition, the heuristic solution provided as a
genetic algorithm suffers from the problems mentioned
above.

In order to deal with the preceding limitations, we have
the FES-BIP model which builds on real grid
environment. FES-BIP is a fault-aware economy
scheduling model which rest on binary integer linear
programming with the advantage of an increased attention
to resource information.

3. PROBLEM DEFINITION

3.1. System model

Grid users submit their application jobs to the Scheduler
with their QoS requirements. The QoS requirements
consist of budget, deadline, number of processing
elements that user required and size of each job with unit
of MI (million instructions). Each application job consists
of independent tasks with each task requiring one PE.
Each resource includes a number of heterogeneous PEs
meaning that the PEs can have different characteristics
like Computational Power, Cost, etc [10]. Figure 1 shows
the interaction of the Scheduler (Meta Broker) with
resource providers and users.

Two types of approach can be considered for job:
1. Space share: every task of a job must be assigned

to PEs of single resource.
2. Time share: tasks of each job can assign to each

PEs of each resource. So task of a job can assign to PEs of
different resources.

In this paper, we supposed that works on space share jobs.
The Scheduler gathers information about resources such
as number of PEs available, cost of PEs per unit time for
each user, PEs computational power with a unit of
Millions of Instructions per Second rating (MIPS) and
means time to repair of each resource (MTTR), from the
resource providers who have agreed to rent their
computational resources to Scheduler. The Scheduler run
scheduling program then assign the job or in other word
assign the task to PEs in appropriate resource. At the end,
gathering the information of finished and failure job. For
failure job updated the QoS requirements then if possible
for them, run jobs again with new QoS requirements [10].

3.2. Problem formulation

Minimize job completion time and cost is the goal of the
Scheduler with m resources and n jobs.

Figure 1.Grid Model with Scheduler
(MetaBroker)[10]

The Scheduler receives information from both users and
resources. We consider this information into following
parts:

1. The information that a Scheduler receives from a
resource at instance time T in grid environment.

},,,,{: iikikii MTTRvcniP
i : Resource ID

in : Number of available PEs in resource i.

ikc : Cost of PE number k in resource i consumption per
second for any tasks of any jobs.

ikv : Computational power of PE k in resource i with
million instructions per second (MIPS) unit.

iTRMT : Mean Time To Repair for resource i. each
resource has different MTTR, maybe same distribution,
we supposed Weibull distribution.

}...1{},...1{ inKkmIi ����

658

2. The QoS information that a Scheduler receives
from a user at instance time T in this
environment.

},,,,,{ jtjjjj mMdbujQ �
j : Job ID

ju : User ID

jb : Budget constraint that user determined for jth job

jb : Deadline constraint that user determined for jth job

tM : Size of each task of job with unit of million
instructions (MI). Each job has t tasks means that the
number of tasks is equal to t for each job.

jm : Number of PE that user need for job execution.

}...1{ nJj ��

The mathematical System modeling for space Share
resources for cost optimization are:

Objective function:

))/(.(max.
111

ikttikikj

n

j

n

k

m

i
vMcx

i

���
���

 (1)

The variable ikjx is a binary variable and denoted that
whether job j assigned to Processing Element K on
resource i or not. The)]/([max iktt vM denotes the
maximum execution time of each task on every PEs.
Because each task execute on every PE in paralleled
manner, so for finding the time of a job execution, we
must find the maximum execution time of tasks.
Generally, Equation (1) calculates the cost of job j which
executed in PE k on resource i.

Constraint:

JjdsvM jiiktt

m

i

n

k

i

������
� �

,)/(max
1 1

 (2)

JjbcvM jikikt

m

i

n

k

i

�����
� �

,)./(
1 1

 (3)

��
� �

���
n

j

n

k
iikj

i

Iinx
1 1

, (4)

��
� �

���
m

i

n

k
jikj

i

Jjmx
1 1

, (5)

Equation (2) denotes the time Constraint that time of
execution and sum of MTTR of resource must be less

than the deadline of the job. The �
�

�
jm

i
ii MTTRs

1

indicates the sum of MTTR of all PEs which used.
Equation (3) denotes the budget Constraint that cost of PE
and duration of using this PE must be less than deadline
of the job. Equation (4) explain the resource‘s capacity
constraint which resource‘s capacity must be greater than
number of PE that is need. Finally, Equation (5) shows
the PE requirement of user‘s job.

4. PROPOSED ALGORITHM

In our proposed model, the scheduler can be aware of
both availability and computational power of the
resources, enabling it to decide if a task can be executed
on a specific resource without failure. It’s obvious that by
having full information about the resources, we can
calculate the execution time and approximate failure time
of resource, so that we can determine whether the task
completion time is before the fault event or not [6].Our
FES-BIP algorithm are shown in Figure 2. We used
branch-and-bound algorithm to search for optimal
solution and solve this binary integer programming
model. Branch-and-bound algorithm verifies that no
better integer feasible solution is possible. This algorithm
could potentially search all 2n binary integer vectors,
where n is the number of variables. As a complete search
might take a very long time, we can limit the search by
using maximum amount of time in the algorithm runs.

The objective function calculates the cost of execution of
job j on PE k in resource i. Here we are multiplying the
cost of execution by the maximum length of time of
execution of all tasks. The maximum length of time is
computed through dividing the length of job in a given
unit of MI by the computational power of PE k on
resource i whose unit is MIPS. When job j can satisfy all
constraints of PE K on resource i the value of ikjx is
equal to 1. So the cost of job j which is executed in PE k
on resource i can be computed by objective function. But
if the value of ikjx is equal to 0, this means that at least
one constraint cannot be satisfied. So this job is not
executed on PE K from resource i and the cost of job j
does not need to be computed by objective function. In
PE requirement of user’s jobs constraint, the numbers of
PEs which are allocated to tasks (the sum of ikjx) are
equal to the number of PEs requirement of user’s job;
meaning that PE in resource i assigned to job j, in
accordance with the number of user’s PE requirements. In
resource’s capacity constraints, we seek for a resource for
job j whose available numbers of PEs are more or at least
equal to the number of required PEs of user’s job. Next

659

Figure 2. Pseudo Code of FES-BIP Algorithm

constraint is the budget constraint which calculates the
execution cost through multiplying cost of execution in a
given unit of time by the length of time of execution. It is
to be mentioned that the execution cost should be less
than the considered budget for this job. The last

constraint, time constraint, determines the maximum
execution time for job and then adds this to failure time of
PEs in resource i. If the calculated time is less than the
deadline, it tells us that, to a great extent, we can be sure
of the completion of job execution.

Complexity of our algorithm can be explained with
respect to two aspects, time and memory complexity.
Complexity of memory for m resources and n jobs and k
PEs in each resource is)(nmk� . Complexity of memory
is the number of linear programming variables. Time
complexity is equal to the number of algorithm iterations
as indicated in Figure 3.this Figure shows an experiment
with the sample with a deadline of 400 seconds and
different budgets. This graph shows that the number of
iterations increased sharply from 120 iterations to 3353
iterations in a range of 10 to 50 resources while the
iterations decreased genteelly from 3353 iteration to 1967
in a range of 50 resources to 200 resources. The rationale
behind of this decrease is obvious, in this circumstance
with more resources finding the optimal result of
scheduling is easier as compare to a situation with fewer
resources while the number of completed job is the same.
For resources fewer than 50 a few jobs are completed
while the completed jobs for resources more than 50 are
approximately equal. So the accepted range of resources
for discussing about time complexity is from 50 to 200
resources. In addition, for jobs that are more relaxed QoS
had a small number of iterations because finding the
result is faster and easier.

Figure 3. The Number of Iteration vs. Number of
Resources for Deadline of 400 and Different Budget.

5. EXPERIMENTS AND RESULTS

We use Bintprog algorithm from MATLAB optimization
toolbox to solve FES-BIP algorithm. The Bintprog
algorithm is based on branch-and-bound algorithm. The
parameter and configuration of grid environment in
simulation of FES-BIP algorithm is presented in table 1.
The number of completed jobs vs. different amounts of
budget and deadline which were used in simulation are

Budget(G$)

0

500

1000

1500

2000

2500

3000

3500

4000

0 50 100 150 200 250

The number of resources

Th
e

nu
m

be
r

of
 it

er
at

io
n

200
300
400
500
700
1000

���%�Computing�objective�function�
���

1�for�j�<=�1�to�number�of�jobs�
2���for�i�<=�1�to�number�of�resources�
3�����for�k�<=�1�to�number�of�available�PE�in�resource�i�
4� � � � � obj_func=� (cost� of� kth� PE� in� resource� i)*��
(max((length� of� job� j)� /� (computational� power� of� kth� PE�
in�resource�i)));��
5�����endfor�
6���endfor�
7��endfor�
��
���%�Computing�constraints�
��
�����%�PE�requirement�of�user‘s�job�constraint�
8����for�j�<=�1�to�number�of�jobs�
9������for�i�<=�1�to�number�of�resources�
10�������for�k�<=�1�to�number�of�available�PE�in�resource�
i�
11���������������Xikj=1;�
12�������endfor�
13�����endfor�
14�����sum�of�Xikj=number�of�PE�that�user�need�for�job�j�
execution�
15���endfor�
��
�����%��Resource‘s�capacity�constraint�
16��for�i�<=�1�to�number�of�resources�
17�����for�j�<=�1�to�number�of�jobs�
18�������for�k�<=�1�to�number�of�available�PE�in�resource�
i�
19�������������Xikj=1��
20�����endfor�
21���endfor�
22���sum�of�Xikj<=�number�of�available�PE�in�resource�i;��
23��endfor�
��
�����%�Budget�Constraint�
24���for�j�<=�1�to�number�of�jobs�
25�����for�i�<=�1�to�number�of�resources�
26�������for�k�<=�1�to�number�of�available�PE�in�resource�
i�
27�������budget_const()=(cost�of�kth�PE�in�resource�i)*�
((length� of� job� j)� /� (computational� power� of� kth� PE� in�
resource�i));�
28�������endfor�
29�����endfor���
30�����sum�of�budget_const()�<=�budget�of�job�j;�����
31���endfor���
���
�����%�Time�Constraint�
32��for�j�<=�1�to�number�of�jobs�
33����for�i�<=�1�to�number�of�resources�
34������for�k�<=�1�to�number�of�available�PE�in�resource�
i�
35� � � � � deadline_const=� max((length� of� job� j)/�
(computational�power�of�kth�PE�in�resource�i))�+�MTTR�of�
resource�i;�
36�����endfor�
37���endfor�
38���sum�of�deadline_cons()�<=�deadline�of�job�j;�
39��endfor�
���

660

shown in Figure 4(a), Figure 4(b), Figure 4(c), Figure
4(d), Figure 4(e) and Figure 4(f).

As illustrated in Figure 4(a), Figure 4(b), Figure 4(c) and
Figure 4(d), (which are concerned with resources of 200,
150, 100 and 50 respectively) for a deadline of 200
seconds the number of completed jobs regardless of the
amount of budgets is around 5. Interestingly, no matter
what the number of resources is, for deadlines of 400, 500

Table 1.
The Parameter and Configuration of Grid

Environment

Parameter Value of parameter
Number of job 100 jobs
Number of resources 200, 150, 100,50 and 25
Deadline From 200 to 600 seconds in steps

of 100
Budget From 200 to 1000 G$
Cost of each PE From 1 to 8 G$ per second by

Gaussian distribution
Computational power Between 277 and 577 MIPS.
The number of available
PE in each resource

From 2 to 4

The number of tasks in
each jobs

From 1 to 3

The size of each task 10000 + 10% MI by Gaussian
distribution

MTTR factor The Weibull distribution by 50 as a
scale Parameter and 5 as a shape
parameter [11].

and 600 seconds there is a slight rising trend of the
number of completed jobs from a range 80-90 to a range
of 90-100 as the amounts of budget varies from 200 to
1000 G$. However, as indicated in Figure 4(a) and Figure
4(b), for the deadlines of 300 seconds with 200 and 150
resources respectively, the number of completed jobs rises
moderately from around 30 to 50 as the amounts of
budget changes from 200 to 1000 G$. AS revealed in
Figure 4(c) and Figure 4(d), related to resources of 100
and 50 respectively, there is a similar slight rises of the
number of completed jobs from 59 to 70 as the amounts
of budget changes from 200 to 1000 G$. Figure 4(e)
concerns 25 resources, for deadline of 400, 500 and 600
seconds, there is moderate increase from 41 to 51 the
number of completed jobs varies from 200 to 1000G$.
Like the former graphs the number of completed jobs for
the deadline of 200 seconds remains constant at 5
regardless of amount of budget. However, the number of
completed jobs for deadline of 300 seconds rising from 35
to 45 and then leveled off as the amount of budget
changes from 200 to 1000 G$. Figure 4(f) presents the
number of completed jobs for 10 resources. As indicated
in this figure, the number of completed jobs for the

deadline of 200 is around 5 again no matter how much the
amount of budget varies. For the rest of deadlines the
sharp increasing trend of the number of completed jobs is
similar starting from 10 to 19.

Figure 4(a). The Number of Completed Jobs for 200
Resources vs. the Amounts of Budget, Deadline and

100 Jobs.

Figure 4(b). The Number of Completed Jobs for 150
Resources vs. the Amounts of Budget, Deadline and

100 Jobs.

Figure 4(c).The Number of Completed Jobs for 100
Resources vs. the Amounts of Budget, Deadline and

100 Jobs.

200
300

400
500

700
1000

200

300

400

500
600

0

10

20

30

40

50

60

70

80

90

Th
e

nu
m

be
r o

f c
om

le
te

d
jo

bs

Budget (G$)

Deadline(second)

200

300
400

500
600

200 300
400

500
700

1000

200

300

400
500
600

0

10

20

30

40

50

60

70

80

90

100

Th
e

nu
m

be
r o

f c
om

le
te

d
jo

bs

Budget (G$)

Deadline(second)

200
300

400
500

600

200
300

400
500

700
1000

200

300

400

500
600

0

10

20

30

40

50

60

70

80

90

100

Th
e

nu
m

be
r o

f c
om

le
te

d
jo

bs

Budget(G$)

Deadline(second)

200
300
400
500
600

661

Figure 4(d) The Number of Completed Jobs for 50
Resources vs. the Amounts of Budget, Deadline and

100 Jobs.

Figure 4(e). The Number of Completed Jobs for 25
Resources vs. the Amounts of Budget, Deadline and

100 Jobs.

Figure 4(f). The Number of Completed Jobs for 10
Resources vs. the Amounts of Budget, Deadline and

100 Jobs.

The number of completed jobs vs. different number of
resources which used in simulation is shown in Figure
5(a), Figure 5(b), Figure 5(c) and Figure 5(d). Figure
5(b), Figure 5(c), Figure 5(d) reveal the number of
completed jobs of deadlines 400, 500 and 600 seconds
respectively. As it can be seen there is a similar trend in
all these graphs regardless of the deadlines. The number
of completed jobs in all these graphs increases rapidly
from a range of 10 to 19 to a range of 83 to 98 as the
number of resources changes from 10-50. Then, for a
range of 50 to 100 resources, the number of completed
jobs remains constant. There is a slight fall of the number

of completed jobs from a range of 92 to 100 jobs to a
range of 85 to 88 jobs when the number of resources
increases to 200. While in the real world the number of
completed jobs is expected to increase or at least to stay
constant as the number of resources rising. We have
witness in our experiments that the number of completed
jobs declines just as the number of resources exceeds 100.
The reason behind this phenomenon is that as the number
of variables (resources and jobs) increases the search
space, consequently, enlarge, making finding a feasible
and optimal answer more time consuming. It should also
be noted that we assumed 60 seconds, as the maximum
solving time in FES-BIP algorithm to select the resources.
As a result, we can’t perform as many jobs expected. To
see what happens if we free the limitation of 60 seconds
(the maximum solving time), we performed an
experiment with no solving time limitation to solve FES-
BIP algorithm. In our experiment the scheduler took 1655
seconds to solver FES-BIP algorithm to select out of 150
resources to executed 74 jobs, far beyond the plausibility
of jobs’ deadline. Figure 6, as an example, illustrate the
result of our experiment for the deadline of 300 seconds.
As it can be seen, the number of completed jobs likes that
in the former Figures (5(a)-5(d)) noticeably increase from
35 to 90 for the range of 10-100 resources and from this
point, as expected, the trend leveled off regardless of the
rise of the number of resources.

Figure 5(a). The Number of Completed Jobs by
Deadline of 300 Seconds for Different Number of

Resources.

Figure 5(b). The Number of Completed Jobs by
Deadline of 400 Seconds for Different Number of

Resources.

200 300
400

500
700

1000

200

300

400

500
600

0

10

20

30

40

50

60

70

80

90

100
Th

e
nu

m
be

r o
f c

om
le

te
d

jo
bs

Budget (G$)

Deadline(second)

200

300

400

500

600

200
300

400
500

700
1000

200

300

400
500

600

0

10

20

30

40

50

60

nu
m

be
r o

f c
om

pl
et

ed
 g

rid
le

t

Budget (G$)

Deadline(second)

200
300
400

500
600

200
300

400
500 700 1000

200

300

400
500

600

0

2

4

6

8

10

12

14

16

18

20

Th
e

nu
m

be
r o

f c
om

le
te

d
jo

bs

Budget (G$)

Deadline(second)

200
300
400
500
600

Budget(G$)

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250

The number of resource

Th
e

nu
m

be
r

of
 c

om
pl

et
ed

jo
bs

200
300
400
500
700
1000

0

20

40

60

80

100

120

0 50 100 150 200 250

The number of resources

Th
e

nu
m

be
r

of
 c

om
pl

et
ed

 jo
bs

200
300
400
500
700
1000

Budget(G$)

662

Figure 5(c). The Number of Completed Jobs by
Deadline of 500 Seconds for Different Number of

Resources.

Figure 5(d). The Number of Completed Jobs by
Deadline of 600 Seconds for Different Number of

Resources.

�

Figure 6 .The numbers of completed jobs by
deadline of 300 seconds for different number of

resources without any time limitation for solving FES-
BIP algorithm.

To take account the total cost spent by users for jobs, we
conducted some experiments which are indicated in the
following Figures (7(a)-7(f)). As revealed in Figure 7(a),
Figure 7(b) and Figure 7(c) concern 200,150 and 100
respectively, the total cost sharply rises from around 100
G$ to around 4500 G$ as the deadline increases to 400
seconds. From this point (4500 G$) the total cost remains
constant while the deadline continues increasing this
similar trend in all these graphs is independent of the
number of resources. Figure 7(d), Figure 7(e) and Figure
7(f) reveal that there is a similar trend in which the total

cost increases up to a certain point and from there is
staying constant. Our experiment generally show that as
the length of deadline and the amount of budget increase,
the number of completed jobs increases accordingly.
However, paying a closer attention to Figure 7(c) and
Figure 7(d) shows that the total cost with 50 resources
(Figure 7(d)) takes twice as much cost as with 100
resources (Figure 7(c)) although the number of completed
jobs is the same. The underlying reason is that cost of
resources varies when the scheduler is selecting some
resources out of 100 resources it may choose those with
lowest cost. These low-cost resources may not necessarily
be those chosen out of 50.

Figure 7(a). Total Spent Cost by Users for Jobs in
200 Resources and Different Budgets and Deadlines.

Figure 7(b). Total Spent Cost by Users for Jobs in
150 Resources and Different Budgets and Deadlines.

Figure 7(c). Total Spent Cost by Users for Jobs in
100 Resources and Different Budgets and Deadlines.

Budget(G$)

0

20

40

60

80

100

120

0 50 100 150 200 250

The number of resources

Th
e

nu
m

be
r

of
 c

om
pl

et
ed

jo
bs

200
300
400
500
700
1000

Budget(G$)

0

20

40

60

80

100

120

0 50 100 150 200 250

The number of resources

Th
e

nu
m

be
r

of
 c

om
pl

et
ed

jo
bs

200
300
400
500
700
1000

Budget (G$)

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250

The number of resource

Th
e

nu
m

be
r o

f
co

m
pl

et
ed

 jo
bs 200

500

700

1000

Budget(G$)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 100 200 300 400 500 600 700

Deadline (second)
To

ta
l c

os
t (

G
$)

200

300

400

500

700

1000

 Budget(G$)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 100 200 300 400 500 600 700

Deadline (second)

To
ta

l c
os

t (
G

$)

200

300

400

500

700

1000

 Budget(G$)

0

1000

2000

3000

4000

5000

6000

0 100 200 300 400 500 600 700

Deadline (second)

To
ta

l c
os

t (
G

$)

200

300

400

500

700

1000

663

Figure 7(d). Total Spent Cost by Users for Jobs in
50 Resources and Different Budgets and Deadlines.

Figure 7(e). Total Spent Cost by Users for Jobs in
25 Resources and Different Budgets and Deadlines.

�

Figure 7(f). Total Spent Cost by Users for Jobs in 10
Resources and Different Budgets and Deadlines.

6. CONCLUSION AND FUTURE WORK

Our major aim in this paper was to construct and propose
a model of scheduling which gets round the recurrent
problems in our fault-aware economy scheduling model
(FES) builds on binary integer linear programming (BIP)
hence FES-BIP model.

This model can meet user’s Quality of Service (QoS)
requirements and can in particular find an optimal result
of job scheduling in grid environment. As a follow up this
study, we intend to design time and cost-time
optimization algorithms. We also aim to solve the linear
programming model by other optimization algorithms. As

a further future aim, we will attempt to apply diverse
MTTR factors for different kinds of resources using FES-
BIP model.�

ACKNOWLEDGEMENTS

We thank Amin Kargarian Marvasti, Faraz Faghri and
Hassan Zamani for their help in solving the LP model and
Sayed Hadi Hashemi and Reza Rezvani for his overall
reviews.

BIOGRAPHIES

MEHDI SARIKHANI is a student of Azad University of
Qazvin in Master of Computer Engineering. He received
his B.A. at Sheikh Bahai University of Isfahan and he
graduated in Computer Engineering in September 2007.
His research interests include grid and Datagrid
computing.

BAHMAN JAVADI is an INRIA post-doctoral fellow in
the MESCAL team at INRIA Rhone-Alpes Grenoble. He
received his PhD and Master’s in Computer Engineering
from Amirkabir University of Technology. His research
interests include cluster and grid computing, parallel and
high performance computing and networks and
interconnection networks.

REFERENCES

[1] A. K. Amoura, et al., "Scheduling independent
multiprocessor tasks," Algorithmica, vol. 32, No.2,
pp.247-261, Springer New York, 2008.

[2] C. Anglano and M. Canonico, "Fault-tolerant scheduling
for bag-of-tasks grid applications," LECTURE NOTES IN
COMPUTER SCIENCE, vol. 3470, pp.630-639,
Springer-Verlag Berlin Heidelberg ,2005.

[3] R. Buyya, et al., "Economic models for resource
management and scheduling in grid computing,"
Concurrency and computation: practice and experience,
vol. 14, pp. 1507-1542, John Wiley & Sons, Ltd, 6
January 2002.

[4] R. Buyya, et al., "A deadline and budget constrained cost-
time optimization algorithm for scheduling task farming
applications on global Grids," Monash University,
Australia, Tech Rep, March 2002.

[5] R. Buyya, et al., "Scheduling parameter sweep
applications on global Grids: a deadline and budget
constrained cost-time optimization algorithm," Software
Practice and Experience, vol. 35, pp. 491-512, John
Wiley & Sons, Ltd, 2005.

 Budget(G$)

0

2000

4000

6000

8000

10000

12000

0 100 200 300 400 500 600 700

Deadline (second)

To
ta

l c
os

t (
G

$)

200

300

400

500

700

1000

 Budget(G$)

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600 700

Deadline (second)

To
ta

l c
os

t (
G

$)

200

300

400

500

700

1000

 Budget(G$)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 100 200 300 400 500 600 700

Deadline (second)

To
ta

l c
os

t (
G

$)

200

300

400

500

700

1000

664

[6] M. Canonico, "Scheduling Algorithms for Bag-of-Tasks
Applications on Fault-Prone Desktop Grids," pp.55-88,
Ph. D. dissertation, university of Turin, 2006

[7] G. Cheliotis, et al., "Grid Economics: 10 lessons from
finance," GRIDS Lab and IBM Research Zurich and Grid
Computing and Distributed Systems Laboratory and
University of Melbourne, Tech. Rep, 2003.

[8] A. Dogan and F. Ozgiiner, "Scheduling independent tasks
with QoS requirements in grid computing with time-
varying resource prices," in Grid computing--GRID 2002:
third international workshop, Baltimore, MD, USA,
pp.58-69, November 18, 2002.

[9] H. Feng, et al., "A deadline and budget constrained cost-
time optimization algorithm for scheduling dependent
tasks in grid computing," LECTURE NOTES IN
COMPUTER SCIENCE, vol. 3033, pp.113-120, Springer
Berlin Heidelberg, 2004.

[10] S. Garg, et al., "A Linear Programming Driven Genetic
Algorithm for Meta-Scheduling on Utility Grids," in 16th
International Conference on Advanced Computing and
Communications, Chennai, India, pp. 19-26, 2008.

[11] D. Kondo, et al., "The Failure Trace Archive: Enabling
Comparative Analysis of Failures in Diverse Distributed
Systems," to be appeared in 10th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, 2010.

[12] Z. Lan and Y. Li, "Failure-Aware Resource Selection for
Grid Computing," International Conference on
Dependable Systems and Networks (DSN), Philadelphia,
pp.186-187, 25 June 2006.

[13] H. M. Lee, et al., "A resource manager for optimal
resource selection and fault tolerance service in grids," in
10th IEEE International Symposium on Cluster
Computing and the Grid, Chicago, Illinois, USA,
pp.572-579, 2004.

[14] M. Maheswaran, et al., "Dynamic mapping of a class of
independent tasks onto heterogeneous computing
systems," Journal of Parallel and Distributed Computing,
vol. 59, pp. 107 - 131, 1999.

[15] M. A. Moges, et al., "Grid scheduling divisible loads from
multiple sources via linear programming," 16th IASTED
International Conference Parallel and distributed
Computing and Systems ,Cambridge, MA, USA, pp.423-
428, 9 November 2004.

[16] B. Nazir and T. Khan, "Fault Tolerant Job Scheduling in
Computational Grid," 2th International Conference on
Emerging Technologies, Peshawar, Pakistan, pp.708-713,
13 November 2006.

[17] P. Townend and J. Xu, "Fault tolerance within a grid
environment,", In Proceedings of AHM2003,
http://www.nesc.ac.uk/events/ahm2003/AHMCD/pdf/063.
pdf, pp.273,2003.

[18] S. Venugopal and R. Buyya, "A deadline and budget
constrained scheduling algorithm for eScience
applications on data grids," LECTURE NOTES IN
COMPUTER SCIENCE, vol. 3719, pp.60-72, Springer
Berlin Heidelberg, 2005.

[19] S. Verboven, et al., "Dynamic grid scheduling using job
runtime requirements and variable resource availability,"
LECTURE NOTES IN COMPUTER SCIENCE, vol.
5168, pp.223-232, Springer Spain, 2008.

[20] G. Wrzesinska, et al., "Fault-tolerant scheduling of fine-
grained tasks in grid environments," International Journal
of High Performance Computing Applications, vol. 20, ,
No. 1, pp.103-114, 2006.

�

665

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Table of Contents

