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Abstract

The surge in demand for utilizing public Cloud resources has introduced
many trade-offs between price, performance and recently reliability. Ama-
zon’s Spot Instances (SIs) create a competitive bidding option for the public
Cloud users at lower prices without providing reliability on services. It is gen-
erally believed that SIs reduce monetary cost to the Cloud users, however it
appears from the literature that their characteristics have not been explored
and reported. We believe that characterization of SIs is fundamental in the
design of stochastic scheduling algorithms and fault tolerant mechanisms in
public Cloud environments for spot market. In this paper, we have done a
comprehensive analysis of SIs based on one year price history in four data
centers of Amazon’s EC2. For this purpose, we have analyzed all different
types of SIs in terms of spot price and the inter-price time (time between price
changes) and determined the time dynamics for spot price in hour-in-day and
day-of-week. Moreover, we have proposed a statistical model that fits well
these two data series. The results reveal that we are able to model spot price
dynamics as well as the inter-price time of each SI by the mixture of Gaus-
sians distribution with three or four components. The proposed model is
validated through extensive simulations, which demonstrate that our model
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exhibits a good degree of accuracy under realistic working conditions.

Keywords: Cloud Computing; Spot Instances; Spot Price; Statistical
Model;

1. Introduction

Due to the surge in demand for using utility computing systems like
public Cloud resources, many trade-offs between price and performance have
emerged. One particular type of Cloud service, which is known as Infrastructure-
as-as-Service (IaaS) provides raw computing with different capacity and stor-
age in the form of Virtual Machines (VMs) with various prices on a pay-as-
you-go basis. For instance, Amazon provides on-demand and reserved VM
instances, which are associated with a fixed set price [1]. However, Ama-
zon can increase or decrease these prices based on their own local policy.
There are 64 different types of instances with various capacities and prices
under two operating systems (i.e. 32 for Linux and 32 for Windows) which
are made available by Amazon in four data centers as illustrated in Table 1
(sorted by their prices)1. In this Table, the prices are given for Linux operat-
ing system and the instances labeled with ’m1’, ’m2’, and ’c1’ are standard,
high-memory, and high-CPU instances, respectively.

In December 2009, Amazon released a new type of instances called Spot
Instance (SI) to sell the idle time of Amazon’s EC2 data centers [2]. The
price of an SI, spot price, depends on the type of instance as well as VM
demand within each data center. In fact, spot instances are an alternative
to other two classes of instances which offer a low price but less reliable and
competitive bidding option for the public Cloud users. Therefore, another
aspect, reliability, has been added to the existing trade-offs to make utility
computing systems more challenging than ever.

In order to utilize SIs, the Cloud users provide a bid which is the maximum
price to be paid for an hour of usage. Whenever the current price of an SI
is equal or less than the user bid, the instance is made available to the user.
If the price of an SI becomes higher than the user’s bid, out-of-bid event
(failure), the VM(s) will be terminated by Amazon automatically and user
does not pay for any partial hour. However, if the user terminates the running

1Amazon now has 7 data centers around the world, but the four major data centers
are considered in this research.
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Table 1: Prices of on-demand instances in different data centers of Amazon (prices given
in cents).

Instances us-west us-east eu-west ap-southeast EC2 Compute Unit Memory (GB) Storage (GB)

m1.small 9.5 8.5 9.5 9.5 1 1.7 160

c1.medium 19 17 19 19 5 1.7 350

m1.large 38 34 38 38 4 7.5 850

m2.xlarge 57 50 57 57 6.5 17.1 420

m1.xlarge 76 68 76 76 8 15 1690

c1.xlarge 76 68 76 76 20 7 1690

m2.2xlarge 114 100 14 114 13 34.2 850

m2.4xlarge 228 200 228 228 26 68.4 1690

VM(s), she has to pay for the full hour. Amazon charges users per hour by
the market price of the SI at the time of VM creation.

There are a number of works on how to utilize SIs to decrease the mone-
tary cost of utility computing for Cloud users [3, 4, 5]. However, a thorough
statistical analysis and modeling of SIs have not been appeared in the liter-
ature, the focus of our research in this study. In this paper, we provide a
comprehensive analysis of all SIs in terms of spot price and the inter-price
time (time between price changes) in four Amazon’s data centers (i.e. us-
west, us-east, eu-west, and ap-southeast). Moreover, we propose a statistical
model to capture the volatile spot prices in Amazon’s data centers. The main
contributions of this paper are as follows:

• We provide statistical analysis for all SIs in Amazon’s EC2 data centers.
We also determine the time correlation in spot price in terms of hour-
in-day and day-of-week.

• We model spot price and the inter-price time of each SI with the mix-
ture of Gaussians distribution. A model calibration algorithm is also
proposed to deal with an observed price trend in the real price history.

• We validate and verify the accuracy of our proposed model through
simulation under realistic working conditions.

We believe that results of this research would significantly helpful in the
design of stochastic scheduling algorithms and fault tolerant mechanisms
(e.g. checkpointing and replication algorithms) for spot market in public
Cloud environments. In addition, although Amazon is the only provider of
SIs at the moment, some researches have been conducted to analyze the

3



free computing resource markets [6, 7]. So, this model can be used by other
resource providers that look forward to offer such a service in the near future.

The paper is structured as follows. In Section 2, we describe the processes
that we model in this paper. We discuss related work in Section 3. We
examine the pattern of spot price in Section 4. In Section 5, we present the
global statistics for all SIs. We then illustrate distribution fitting for spot
price and the inter-price time in Section 6. In Section 7, we propose an
algorithm for model calibration. We discuss the validation of the proposed
models through simulation in Section 8. In Section 9, we summarize our
contributions and describe future directions.

2. Modeling Approach

In this section, we describe two variables that we are going to analyze and
model. In Amazon’s data centers, SIs have two variables (i.e. spot price and
inter-price time) specified by the Cloud provider and one variable (user’s bid)
determined by users. In this study, we focus on the analysis and modeling
of spot price and the inter-price time as two highly volatile system variables.
These variables are illustrated in Figure 1 where Pi is the price of an SI at
time ti. So, the inter-price time is defined as Ti = ti+1 − ti. Therefore, the
time series of spot price (Pi) and the inter-price time (Ti) are analyzed and
modeled in the following sections.

Figure 1: Spot price and the inter-price time of Spot instances.

The traces that we use in this study are one year price history of all
Amazon SIs from the first of February 2010 to mid-February 2011. We use
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the first 10-month (Feb-2010 to Nov-2010) in the modeling process. These
10-month traces along with the last 2-month are used for the model validation
purpose. The spot price history is freely provided by Amazon per SI for each
data center and also available through other third-parties such as [8]. We do
not use data prior to February 2010 due to an algorithm issue reported in [9]
for prices. Moreover, we only use the SIs with Linux operating systems from
all data centers. Due to similarity of the results, we present our findings for
only two data centers (i.e. eu-west and us-east). Interested readers can refer
to the extended version of this paper [10] for more discussions about other
data centers.

3. Related Work

Although the current literature shows that SIs are good alternative for
on-demand or reserve instances in terms of monetary cost, the characteristics
of SIs are still not clear to users and researchers in the community. Wee [11]
considered SIs as computing resources with real-time pricing. Focusing on
the real price history of SIs, this paper concluded that still users need more
monetary incentive to shift their workload into SIs. Another work that inves-
tigated the behavior of Spot prices is presented in [12], where authors used
reverse engineering to construct a price model based on Auto-Regressive
(AR) for SIs.

Our work is different in several aspects. We provide statistical analysis
of all SIs and study their behavior in terms of hour-in-day and day-of-week.
Moreover, we proposed to devise a statistical model for spot price as well
as inter-price time. In addition, the simulation results reveal that we are
able to model behavior of SIs by the mixture of Gaussian with three or four
components.

In the following, we briefly review the other related work mainly inves-
tigated the usage of SIs to decrease the monetary cost of utility computing.
Yi et al. [3, 4] introduced some checkpointing and migration mechanisms
for reducing cost of SIs. They used the real price history of EC2 spot in-
stances and showed how the adaptive checkpointing and migration schemes
could decrease the monetary cost and improve the job completion times.
Chaisiri et al. [13] proposed two provisioning algorithms based on stochas-
tic programming, robust optimization, and sample-average approximation
to optimized the provisioning cost for long-term and short-term planning.
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Moreover, in [14], a resource allocation policy to run deadline constrained
jobs on SIs in a cost-effective manner is proposed.

In [15], a decision model for the optimization of performance, cost and
reliability under SLA constraints while using SIs is proposed. They used the
real price history and workload models to demonstrate how their proposed
model can be used to bid optimally on SIs to reach different objective with
desired levels of confidences. Mazzucco and Dumas [16] considered a case
where a web service is deployed on SIs and proposed a bidding schema and
resource allocation policies to optimize the web service provider’s revenues.

Chohan et al. [17] proposed a method to utilize the SIs to speed up the
MapReduce tasks. They provided a Markov chain to predict the expected
lifetime of an SI. They concluded that having a fault tolerant mechanism is
essential to run MapReduce jobs on SIs. Also, in [5], authors proposed a
hybrid Cloud architecture to lease the SIs to manage peak loads of a local
cluster. They proposed some provisioning policies and investigated the uti-
lization of SIs compared to on-demand instances in terms of monetary cost
saving and number of deadline violations.

Zhang et al. [18, 19] investigated dynamic market control problem in a
single cloud provider motivated by the SIs offered by Amazon’s EC2. They
used static and dynamic optimizations for resource allocation to maximized
the provider’s revenue as well as user satisfactions. Rahman et al. [20] pro-
posed resource allocation for Cloud users based on financial option theory to
reduce the risk of dynamic price in spot markets. They showed that fluctua-
tion in Amazon’s SIs are much lower than expected values in a free market.
This possibly is because of less users for SIs in compare to other other types
of reliable resources such as on-demand instances.

Statistical modeling has been widely used in the characterization of com-
puter systems’ workloads and failures [21, 22, 23]. Although we apply the
same techniques, the characteristics of SIs are far from the behavior of the
workloads and failures, so require a comprehensive analysis.

4. Patterns of Spot Price

In this section, we examine hour-in-day and day-of-week time dynamics
for the price of different SIs in eu-west and us-east data centers. We use the
same approach as [24] to show how the price of one SI changes each hour in
the day or each day of the week. As we have the price history in GMT time
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zone, we adjusted the local time for the time zone. This adjustment could
reveal the dependency of spot price on the local time of a data center.

In Figure 2(a) and Figure 3(a), we create eight 3-hour time slots per day,
and determine the average price of each SI in each time slot over all days.
Then, we normalized this average by the maximum average price over all
days. Note that the frequency of 3-hour sampling could be increased to 1-
hour sampling with 24 time slots in a day. However, it would only increase
the sample size without shedding much light on the price dynamics, since
spot price in Amazon’s data centers are changing at the earliest every 2-3
hours (see Section 5). In these figures, we can observe that the y-axis is in
the range of [0.98 1.0] where there is an increasing trend over the first-half of
each day ([0 12]) and decreasing trend in spot price during the second-half
of each day for all SIs in each data center.
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Figure 2: Patterns of spot price in eu-west data center.

In Figure 2(b) and Figure 3(b) , we applied the same procedure to obtain
the average price over seven 24-hours time slots within a week. The y-axis
in these figures has wider range of [0.91 1.0] for eu-west and [0.95 1.0] for
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Figure 3: Patterns of spot price in us-east data center.

us-east data center2. As it is observable from this plot, we can not find any
specific pattern for spot price in eu-west, except the decreasing in prices on
weekends. However, for other Amazon’s data centers such as us-east, we
see more clear patterns in day of the week where on Tuesday we have the
maximum price for almost all SIs in those data centers. Moreover, the lowest
price are on Saturday, but on Sunday we again observe the increasing in price
for all SIs.

5. Global Statistics and Analysis

In the following, we analyze the price history of different SIs in eu-west
and us-east data centers. It has been shown that spot prices are tend to be
random rather than market-driven [12]. So, analysis of global statistics can
reveal some basic facts about SIs3.

2For other data centers, this range is ([0.95 1.0]).
3We conduct all of our statistical analysis using Matlab R2010b on a 32-bit Core2Duo

3.00GHz desktop with 3GB of RAM. We use when possible standard tools provided by the
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Table 2: Statistics for spot price in eu-west data center (Values given in cents).

Instances Mean TrMean Median Std CV IQR Max Min Skewness Kurtosis No.

m1.small 4.00 4.00 4.00 0.19 0.05 0.20 9.50 3.80 9.44 242.97 3702

c1.medium 8.00 8.00 8.00 0.27 0.03 0.40 10.10 7.60 0.28 3.91 3812

m1.large 16.04 16.02 16.10 0.85 0.05 1.00 50.00 15.20 21.55 792.41 3875

m2.xlarge 24.04 24.03 24.10 1.03 0.04 1.40 57.10 22.80 12.91 387.69 3763

m1.xlarge 32.05 32.01 32.10 1.60 0.05 2.00 76.00 30.40 15.34 415.47 3917

c1.xlarge 32.04 32.03 32.10 1.07 0.03 2.00 45.00 30.40 0.54 8.27 3658

m2.2xlarge 56.04 56.04 56.20 1.83 0.03 3.42 76.00 53.20 0.25 4.99 4001

m2.4xlarge 112.08 112.08 112.50 3.62 0.03 6.80 150.00 106.40 0.21 4.55 3912

Table 3: Statistics for spot prices in us-east data center (Values given in cents).

Instances Mean TrMean Median Std CV IQR Max Min Skewness Kurtosis No.

m1.small 3.16 3.02 3.10 0.76 0.24 0.20 15.00 2.90 6.24 50.16 3279

c1.medium 6.07 6.01 6.00 0.53 0.09 0.40 17.00 5.70 7.59 90.49 3643

m1.large 12.98 12.15 12.10 4.47 0.34 0.70 68.00 11.40 6.62 60.29 2034

m2.xlarge 17.78 17.05 17.10 4.87 0.27 1.10 80.00 16.20 7.09 57.62 3524

m1.xlarge 24.18 24.05 24.10 2.56 0.11 1.50 100.00 22.80 22.03 599.91 3704

c1.xlarge 26.01 24.26 24.20 8.68 0.33 1.60 128.00 22.80 4.85 27.78 3600

m2.2xlarge 42.15 42.05 42.20 2.47 0.06 2.50 119.00 39.90 14.91 377.30 3790

m2.4xlarge 84.58 84.04 84.20 8.46 0.10 5.00 240.00 79.80 13.54 218.92 3790

We inspect the basic statistics of the traces in terms of spot price in
Table 2 and Table 3 ; and in terms of the inter-price time in Table 4 and
Table 5. The statistics in the tables are mean, trimmed mean (the mean value
after discarding 10% of extreme values), median, standard deviation (Std),
coefficient of variance (CV), interquartile range (IQR), maximum, minimum,
skewness (the third moment), kurtosis (the forth moment) and number of
samples.

These tables show three types of descriptive statistics. Statistics of the
first type (mean, median, trimmed mean) reveal the central tendency of
the distributions. The trimmed mean is a useful estimator of the central
tendency as it is less sensitive to outliers. Statistics of the second type (CV,
IQR, minimum, maximum) reflect the spread of the distributions. Statistics
of the third type (kurtosis, skewness) represent the shape of the distributions.

First of all, we find that on average the price of SIs can be as low as

Statistical Toolbox. Otherwise, we implement or modify statistical functions ourselves.
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Table 4: Statistics for the inter-price time in eu-west data center (Values given in hours).

Instances Mean TrMean Median Std CV IQR Max Min Skewness Kurtosis No.

m1.small 1.96 1.61 1.35 2.66 1.35 0.30 109.08 0.02 19.94 727.54 3701

c1.medium 1.91 1.59 1.34 1.86 0.97 0.32 22.81 0.02 4.53 30.63 3811

m1.large 1.88 1.57 1.33 1.79 0.95 0.31 30.94 0.02 5.02 42.02 3874

m2.xlarge 1.79 1.53 1.34 1.56 0.87 0.30 22.83 0.02 4.93 38.54 3762

m1.xlarge 1.86 1.58 1.34 1.78 0.96 0.31 38.20 0.02 7.34 101.43 3916

c1.xlarge 1.99 1.56 1.34 7.22 3.63 0.30 378.19 0.02 44.38 2169.40 3657

m2.2xlarge 1.82 1.55 1.33 1.60 0.88 0.31 29.02 0.02 5.11 45.75 4000

m2.4xlarge 1.86 1.58 1.34 1.71 0.92 0.31 26.51 0.02 5.20 44.28 3911

44% and 38% of on-demand instances for eu-west and us-east data centers,
respectively. This expresses that there are some opportunities in reducing
monetary cost of utility computing at the cost of unreliability. Moreover,
the maximum price of some SIs (like m1.large) is bigger than the price of
corresponding on-demand instance (specially in us-east data center). Since
us-east is the cheapest data center, more users demand increases the fluctua-
tion in spot prices (The higher value of CV in spot prices in us-east confirms
this variability). Thus, even if the users’ bid is as high as the on-demand
prices, we may still have a probability of out-of-bid events.

The results in these tables reveal that the ratios between the mean and
the median for spot price and the inter-price time of SIs are close to 1 for
each trace. This indicates that Gaussian distribution might be a good op-
tion for the model. However, the skewness and kurtosis values show that
the underlying distributions are right-skewed and short-tailed. Therefore,
Gaussian distribution may not be a representative model to use and a better
distribution is in order.

Additionally, we can observe that the inter-price time is more variable
than spot price due to higher values of coefficient of variance. Also, analysis
of the trimmed mean confirmed that inter-price time has greater variabil-
ity. Therefore, we may need distributions with higher degrees of freedom,
to model the inter-price time for these traces. It is worth noting that the
minimum inter-price time is almost one hour in all data centers except eu-
west which is about a few minutes and can be seen in Table 4. Moreover, in
eu-west and us-east data centers, the set price of SIs are stable on average
for 2-3 hours. This observation is valid for other data centers as well [10].
This is the justification of 3-hour time slots to examine patterns of spot price
in Figure 2(a) and Figure 3(a).
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Table 5: Statistics for the inter-price time in us-east data center (Values given in hours).

Instances Mean TrMean Median Std CV IQR Max Min Skewness Kurtosis No.

m1.small 2.22 1.66 1.36 3.53 1.59 0.32 76.59 0.78 9.21 130.29 3278

c1.medium 2.00 1.65 1.37 2.09 1.05 0.31 49.91 1.00 6.91 98.48 3642

m1.large 3.58 2.20 1.44 18.60 5.20 1.54 657.29 1.00 26.29 824.35 2033

m2.xlarge 1.91 1.58 1.34 2.02 1.06 0.31 36.26 1.00 6.11 61.19 3523

m1.xlarge 1.96 1.62 1.34 3.05 1.55 0.32 145.98 0.58 30.51 1370.41 3703

c1.xlarge 2.02 1.66 1.35 3.38 1.67 0.33 171.62 1.00 35.74 1758.12 3599

m2.2xlarge 1.92 1.62 1.34 1.94 1.01 0.31 50.40 1.01 8.42 143.99 3789

m2.4xlarge 1.92 1.62 1.35 1.76 0.92 0.32 23.02 1.00 4.50 30.98 3789

6. Distribution Fitting

After global statistical analysis, we first inspect the Probability Density
Function (PDF) of spot price and the inter-price time. Then, we conduct
parameter fitting for the Mixture of Gaussians (MoG) distribution by the
expectation maximization (EM) algorithm to model both time series. We
considered other distributions, such as Weibull, Normal, Log-normal and
Gamma distributions as well. However, the mixture of Gaussians distribution
shows the better fit with respect to others [10]. In this section, we show the
process of fitting for eu-west data center to avoid presenting similar figures
and plots. We present the final results for both selected data centers.

6.1. Probability Densities

The PDFs of spot price of each SI in eu-west data center are depicted
in Figure 4. We can easily observe bi-modality in the probability density
functions. Moreover, the price distribution of all SIs, except m1.small, are
almost symmetric. The exception for m1.small is possibly because of diverse
usage patterns of this instance as the cheapest resource in each data center.

The PDFs of the inter-price time for each SI in eu-west are represented in
Figure 5. Obviously, there is a single dominant mode (peak) in the density
functions when compared to (nearly) equal peaks in the PDFs of spot price.
Most of SIs have the peak around two hours, which confirm the results of the
previous section (see Mean column in Table 4). The reason for the very sharp
peak in these density functions is investigated in Section 7. Observation from
the plotted density functions of both time series, our decision to propose a
mixture of Gaussians distribution as a good candidate for approximating
such density shapes is further strengthened. This is also confirmed by [26]
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Figure 4: Probability density functions of spot price for all SIs in eu-west data center.

where they used a mixture of Gaussians distribution to model a multi-modal
density function.

6.2. Parameter Estimation and Goodness of Fit Tests

In this section, we conduct parameter fitting for the mixture of Gaussians
distribution with k components, which is defined as follows:

cdf(x; k, ~p, ~µ, ~σ2) =
k∑

i=1

pi
2

(
1 + erf(

x− µi

σi
√

2
)

)
(1)

where ~µ, ~σ2, and ~p are the vector of mean, variance and probability of com-
ponents with k items. Also, erf() is the error function, which is defined as
follows:

erf(x) =
2√
π

∫ x

0

e−t
2

dt (2)

To maximize the data likelihood in terms of parameters ~µ and ~σ2 where
k is given a priori, we adopt the expectation maximization (EM) algorithm,
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Figure 5: Probability density functions of the inter-price time for all SIs in eu-west data
center.

which is a general maximum likelihood estimation [21]. Parameter fitting was
done using Model Based Clustering (MBC), which is introduced by Fraley
and Raftery [25]. MBC is a methodological framework that can be used for
data clustering as well as (multi)variate density estimation. One assumption
is that data has several components each of which is generated by a proba-
bility distribution. Model Based Clustering uses Bayesian model selection to
choose the best model in terms of number of components [26]. In contrast, we
use the goodness of fit (GOF) tests to determine the best model as we have
an estimation for the number of components in the model. We choose the
number of components between 2 and 4 (2 ≤ k ≤ 4) based on the observation
of the density functions. We measured the goodness of fit of the resulting
models using a visual method (i.e. standard probability-probability (PP)
plots) and Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) tests [21]
as quantitative metrics.

After parameter estimation, we must examine the quality of each fit
through GOF tests. First of all, we present the graphical results of dis-
tribution fitting for spot price and the inter-price time of all SIs in Figure 6
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Figure 6: PP-plots of spot price in eu-west for mixture of Gaussians (k = 2, k = 3, k = 4).
X-axis: empirical quantiles, and Y-axis: fitted quantiles.
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and Figure 7 for eu-west data center, respectively. In these plots, the closer
the plots are to the line y = x, the better the fit. In each plot x-axis is
the empirical quantiles while y-axis is the fitted quantiles. Based on these
figures, the mixture of Gaussians distribution with three or four components
can fit spot price and the inter-price time of SIs in eu-west data center. The
only instance which is hard to fit, specially in terms of spot price, is m1.small
instance.

To be more quantitative, we also report the p-values of two GOF tests
(i.e. KS and AD tests). We randomly select a subsample of 50 of each
trace and compute the p-values iteratively for 1000 times and finally obtain
the average p-value. This method is similar to the one used by the authors
in [27]. Moreover, in all cases the coefficient of variance is less than one (i.e.,
CV < 1), so the average value is a representative estimate.

The results of GOF tests are listed in Table 6 and Table 7 for spot price
in eu-west and us-east data centers. For the inter-price time, the p-values
are presented in Table 8 and Table 9 in eu-west and us-east, respectively.
Moreover, in each row the best fits are highlighted. In some cases, we have
two winners as there is one best fit per each GOF test. These quantitative
results strongly confirm the graphical results of the PP-plots. The p-values
in the first row of Table 6 and Table 7 express that spot price of m1.small
instance is hard to fit, even with four components.

The set of parameters for MoG distributions are listed in Table 10 and
Table 11 for spot price and the inter-price time for k = 3 in eu-west and us-
east data center, respectively. It is worth noting that in the list of parameters,
we just report two items of parameter ~p, as the last item in this vector can
be computed using others. (i.e. pk = 1−

∑k−1
i=1 pi).

As the number of parameters in the MoG distribution is 3k + 1 (see
Equation 1), so we have a trade-off between accuracy and complexity of the
model. With fewer components, the analysis becomes simpler that gives
reasonably good fit to spot price and inter-price time with a compromise of
accuracy to some extent. This would significanly help in understanding the
data series on the first step. With this understanding a model to better fit
the data series with many components can be designed. Hence, for the sake
of simplicity and homogeneity, in the rest of this paper we choose the model
with three components (k = 3) for both spot price and the inter-price time
for further analysis. The set of parameters for MoG distributions for spot
price and the inter-price time for 2 ≤ k ≤ 4 in all data centers are reported
in [10].
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Figure 7: PP-plots of the inter-price time in eu-west for mixture of Gaussians (k = 2, k = 3,
k = 4). X-axis: empirical quantiles, and Y-axis: fitted quantiles.
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Table 6: p-values resulting from KS and AD tests for spot price in eu-west.

Instances MoG (k = 2) MoG (k = 3) MoG (k = 4)
m1.small 0.016 0.791 0.017 0.789 0.053 0.803
c1.medium 0.211 0.779 0.217 0.791 0.224 0.790
m1.large 0.113 0.678 0.319 0.752 0.354 0.754
m2.xlarge 0.139 0.616 0.356 0.721 0.415 0.734
m1.xlarge 0.134 0.570 0.369 0.708 0.431 0.706
c1.xlarge 0.394 0.681 0.444 0.705 0.421 0.707
m2.2xlarge 0.420 0.648 0.469 0.682 0.450 0.672
m2.4xlarge 0.429 0.617 0.463 0.637 0.476 0.653

Table 7: p-values resulting from KS and AD tests for spot price in us-east.

Instances MoG (k = 2) MoG (k = 3) MoG (k = 4)
m1.small 0.000 0.732 0.000 0.736 0.000 0.727
c1.medium 0.056 0.774 0.150 0.796 0.147 0.797
m1.large 0.158 0.726 0.157 0.723 0.329 0.763
m2.xlarge 0.132 0.697 0.138 0.690 0.126 0.693
m1.xlarge 0.142 0.634 0.138 0.633 0.142 0.627
c1.xlarge 0.180 0.669 0.187 0.673 0.187 0.673
m2.2xlarge 0.169 0.553 0.433 0.693 0.453 0.699
m2.4xlarge 0.169 0.464 0.181 0.470 0.181 0.467

Table 8: p-values resulting from KS and AD tests for the inter-price in eu-west.

Instances MoG (k = 2) MoG (k = 3) MoG (k = 4)
m1.small 0.347 0.476 0.415 0.592 0.489 0.627
c1.medium 0.382 0.546 0.390 0.566 0.380 0.566
m1.large 0.390 0.552 0.387 0.573 0.400 0.574
m2.xlarge 0.389 0.556 0.393 0.566 0.405 0.585
m1.xlarge 0.369 0.526 0.391 0.564 0.406 0.581
c1.xlarge 0.221 0.319 0.399 0.561 0.467 0.602
m2.2xlarge 0.376 0.532 0.426 0.570 0.463 0.610
m2.4xlarge 0.368 0.529 0.383 0.569 0.395 0.573
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Table 9: p-values resulting from KS and AD tests for the inter-price in us-east.

Instances MoG (k = 2) MoG (k = 3) MoG (k = 4)
m1.small 0.360 0.467 0.433 0.592 0.476 0.623
c1.medium 0.381 0.517 0.441 0.598 0.489 0.622
m1.large 0.004 0.052 0.329 0.508 0.411 0.595
m2.xlarge 0.370 0.528 0.373 0.563 0.464 0.617
m1.xlarge 0.272 0.389 0.401 0.569 0.391 0.562
c1.xlarge 0.240 0.341 0.396 0.570 0.460 0.597
m2.2xlarge 0.353 0.498 0.401 0.579 0.459 0.605
m2.4xlarge 0.381 0.537 0.434 0.569 0.402 0.578

Table 10: Parameters of the mixture of Gaussians distributions for spot price and inter-
price time in eu-west.

Instances Price model (k = 3) Inter-price model (k = 3)

~p ~µ ~σ2 ~p ~µ ~σ2

m1.small 0.003 0.003 5.216 5.216 3.997 1.670 1.670 0.020 0.178 0.028 3.474 11.536 1.292 2.308 120.051 0.022

c1.medium 0.443 0.276 8.018 8.292 7.703 0.045 0.006 0.006 0.807 0.090 1.279 6.452 2.876 0.022 12.435 0.528

m1.large 0.492 0.505 15.556 16.470 24.401 0.059 0.048 114.879 0.068 0.126 6.793 3.040 1.276 13.803 0.940 0.022

m2.xlarge 0.445 0.001 23.264 53.500 24.643 0.109 12.960 0.135 0.824 0.066 1.284 2.506 5.166 0.022 0.035 8.192

m1.xlarge 0.457 0.002 31.010 53.803 32.848 0.184 326.523 0.249 0.793 0.177 1.283 3.310 8.356 0.022 1.864 29.730

c1.xlarge 0.261 0.243 33.188 30.756 32.057 0.072 0.058 0.722 0.811 0.187 1.286 4.048 84.430 0.022 5.341 15636.817

m2.2xlarge 0.492 0.252 56.119 53.784 58.100 1.813 0.157 0.216 0.405 0.399 1.155 1.398 4.044 0.007 0.008 6.795

m2.4xlarge 0.263 0.249 116.126 107.609 112.183 0.898 0.660 7.061 0.063 0.137 6.705 3.001 1.279 13.524 0.863 0.022

Table 11: Parameters of the mixture of Gaussians distributions for spot price and inter-
price time in us-east

Instances Price model (k = 3) Inter-price model (k = 3)

~p ~µ ~σ2 ~p ~µ ~σ2

m1.small 0.024 0.952 6.009 3.012 6.009 3.402 0.009 3.402 0.164 0.043 3.581 13.935 1.301 2.638 120.212 0.025

c1.medium 0.439 0.537 5.808 6.167 8.726 0.007 0.011 2.935 0.780 0.145 1.301 2.954 7.379 0.023 0.814 20.600

m1.large 0.596 0.094 11.979 22.345 12.066 0.147 114.857 0.148 0.023 0.389 54.787 3.976 1.277 11982.593 4.795 0.022

m2.xlarge 0.461 0.504 17.020 17.020 38.737 0.299 0.299 209.027 0.147 0.814 3.508 1.282 9.249 1.809 0.023 27.356

m1.xlarge 0.008 0.439 41.511 24.045 24.023 425.466 0.591 0.593 0.778 0.015 1.278 13.908 3.655 0.022 353.873 3.005

c1.xlarge 0.071 0.328 51.722 24.064 24.028 340.120 0.594 0.593 0.759 0.016 1.280 14.298 3.651 0.021 459.583 3.196

m2.2xlarge 0.444 0.549 40.715 43.104 61.120 0.308 0.462 334.756 0.041 0.778 8.230 1.278 3.230 29.753 0.021 1.354

m2.4xlarge 0.594 0.007 83.823 166.323 84.275 7.063 2453.527 6.942 0.218 0.398 4.194 1.167 1.407 7.461 0.008 0.007
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7. Model Calibration

In this section, we look into the time evolution of spot price and the inter-
price time, which potentially can lead us to obtain a more accurate model.
For this purpose, we examine the scatter plot of spot price and the inter-price
time during February 2010 till November 2010. We just present the plots for
m2.4xlarge instance, as the results are consistent for other instance types
within the data centers.

Figure 8(a) depicts the scatter plot of spot price for m2.4xlarge in eu-
west data center for the duration of the price history. As it can be seen in
this figure, there is no clear correlation in spot price where they are evenly
distributed in a specific range (this range depends on the type of instances).
However, congestion of spot price is increased after mid-July and this is
the case for all SIs in eu-west data center. To confirm this observation, we
examine the scatter plot of the inter-price time for this SI in Figure 8(b). We
observe that inter-price time become suddenly shorter after mid-July. That
means, the frequency of changing price is increased while spot price remains
bounded within a small price range. The inspection of other SIs within the
data center reveals the same result. This is also the reason of very sharp
peak in density functions of the inter-price time in Figure 5.

This trend is possibly due to some fine tunings made by Amazon in their
pricing algorithm. It is worth noting that the same issue has been observed
in other Amazon’s EC2 data centers in different dates. As illustrated in
Figure 9, this phenomenon is observable in us-east at the end of July 2010
for m2.4xlarge instances. Also, for us-west and ap-southeast data centers
this changes happened in January 2011 (Figures are plotted in [10]).

Focusing on the scatter plot of the inter-price time (MoG model for k = 3)
presented in Figure 8(b), we can see that after mid-July only one component
(i.e. component 3) remains and other components collapsed to a small band.
As this observation is consistent over all SIs, we propose a model calibra-
tion algorithm (Algorithm 1) to find the date of collapsing (which is called
calibration date) as well as remaining component(s).

The algorithm needs the trace of the inter-price time of an SI (Traceinst)
and the number of components (k). The result of mixture of Gaussians

model with k components is
−−−→
index. Also,

−−→
date is a vector, each element of

which correspond to each item of
−−−→
index. At first, the algorithm computes the

probability of each component in each month in the whole trace and after

that finds a list (
−→
Qm) where the probability of one or more components is
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(a) Scatter plot of spot price for m2.4xlarge.
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Figure 8: Scatter plot of spot price and the inter-price time for m2.4xlarge in eu-west.
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(a) Scatter plot of spot price for m2.4xlarge.
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Figure 9: Scatter plot of spot price and the inter-price time for m2.4xlarge in us-east.
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Algorithm 1: Model Calibration Algorithm
Input: Traceinst, k

Output: CalDate,
−−−−−→
RCmps

1 Ts ← Traceinst.start.time;
2 Te ← Traceinst.end.time;
3 n← Sizeof(Traceinst);

4
−−−→
index← (c1, c2, . . . , cn) ci ∈ {1, . . . , k};

5
−−→
date← (d1, d2, . . . , dn) di ∈ {Ts . . . Te};

6 qa,b ← probability of component a in month b;

7
−→
Q ← {qa,b|a ∈ {1, . . . , k}, b ∈ {Ts . . . Te}};

8
−→
Qm ← {qf,e|qf,e < q0, qf,e ∈

−→
Q};

9
−−−→
Cmps← {g|qg,h ∈

−→
Qm};

10
−−−−−→
RCmps← {1, . . . , k} −

−−−→
Cmps ;

11 m← min{h|qg,h ∈
−→
Qm};

12 //Traceinst(m) is the trace for month m;
13 Tms ← Traceinst(m).start.time;
14 Tme ← Traceinst(m).end.time;
15 z ← Sizeof(Traceinst(m));

16
−−−−→
Sindex← (c′1, c

′
2, . . . , c

′
z) c′i ∈ {1, . . . , k};

17
−−−→
Sdate← (d′1, d

′
2, . . . , d

′
z) d′i ∈ {Tms . . . Tme};

18 t← max{rl|
−−−−→
Sindex(rl) == g, l ∈ {1, . . . , z}};

19 CalDate←
−−−→
Sdate(t);
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less than q0 (line 4-8). q0 is a threshold value and we define it as low as
0.01 (i.e. q0 = 0.01). The components that are not in this list are remaining

components (
−−−−−→
RCmps in line 10). The first month in the list of

−→
Qm is the

calibration month, called m (line 11). Finally, the last occurrence of the
component(s) in month m would be the calibration date (CalDate), which
is obtained in line 13-19.

The results of applying this algorithm for all SIs in eu-west and us-east
data centers are presented in Table 12 where all calibration dates are in July.
The remaining components can be inspected in the fifth column (~p of the
inter-price time model) of Table 10 and Table 11, where the component(s)
with higher probability remain(s) beyond calibration date. For instance,
the third component of the inter-price time model for m2.4xlarge in eu-
west with probability of 0.8 (1-0.063-0.137) remains after 15-July where the
mean and variance are 1.279 and 0.022 hours, respectively. The graphical
demonstration of Figure 8(b) can confirm the correctness of this algorithm,
where component 3 implies a cluster around the mean value of 1.279 hours.

The last step of the model calibration is probability adjustment where
the probability of remaining component(s) must be scaled up to one. This
adjustment can be done by the following formula:

pj =
pj∑
∀i

pi
i, j ∈

−−−−−→
RCmps (3)

In other words, in the calibrated model for each SI, we just change the
probability of remaining component(s) after the calibration date. In the
following section, we investigate the accuracy of the calibrated model with
respect to the real price history as well as the non-calibrated model.

8. Model Validation

In order to validate the proposed model, we implemented a discrete event
simulator using CloudSim [28]. The simulator has a general architecture of
IaaS Cloud with capability of provisioning of on-demand and Spot instances
for input workload. The simulator uses the model or the price history traces
to run the input workload. We consider the case where the user requests
for one VM from one type of SI and runs whole jobs on that VM. The
total monetary cost of running the workload on an SI is the parameter to
be considered. In this section, we only present the results for eu-west the
validation results are the same for us-east and other data centers.
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Table 12: The results of model calibration in eu-west and us-east (k = 3).

Instances Calibration Dates Remaining Components
eu-west us-east eu-west us-east

m1.small 24-July 25-July 3 1,3
c1.medium 15-July 25-July 1 1
m1.large 15-July 26-July 3 2,3
m2.xlarge 13-July 27-July 1 2
m1.xlarge 23-July 24-July 1 1
c1.xlarge 23-July 26-July 1 1,3
m2.2xlarge 23-July 26-July 1,2 2
m2.4xlarge 15-July 26-July 3 2,3

8.1. Simulation Setup

The workload that we use in our experiments is the workload traces from
LCG Grid which is taken from the Grid Workloads Archive [29]. We use the
first 1000 jobs of this trace as the input workload for the experiments which is
long enough to reflect the behavior of spot price for different SIs. We assume
that one EC2 compute unit is equivalent of a CPU core with capacity of
1000 MIPS4. We also assume that all jobs can be executed on a single VM,
so we do not have any parallel jobs. As such, the selected workload needs
about two weeks (≈ 400 hours) to complete on a single m1.small instance.
For other instance types we consider the linear speedup with the computing
capacity in terms of EC2 compute unit which are listed in Table 1. For each
experiment, the results are collected for 50 simulation rounds.

Moreover, we assume a very high user’s bid for each simulation (for ex-
ample on-demand price) where we do not have any out-of-bid event in the
execution of the given workload. We use the model with three components
(k = 3) for both spot price and the inter-price time to show the trade off-
between accuracy and complexity. In our experiments, the results of the
simulations are accurate with a confidence level of 95%.

4Amazon mentioned that one EC2 compute unit has equivalent CPU capacity of a
1.0-1.2 GHZ 2007 Opteron or 2007 Xeon processor [2].
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Figure 10: Model validation for all SIs in eu-west for the modeling traces (Feb-2010 to
Nov-2010).
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Figure 11: Model validation for all SIs in eu-west for the new traces (Dec-2010 to mid-
Feb-2011).
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8.2. Results and Discussions

In the following, we present the results of two different set of experiments.
First, we discuss the results of model validation where we have the price
history that was included in the modeling process (i.e. Feb-2010 to Nov-
2010). Second, we report the results from model validation using a new
price history which was not included in the modeling process. The new price
history is from December 2010 till mid-February 2011.

Figure 10 shows the model validation results where the probability den-
sity functions of the total monetary cost to run the given workload have been
plotted for all types of SIs. In each plot, Trace, Model-Cal, and Model-nCal
refer to the result of using the real price history, the model after calibration
and the model before calibration, respectively. Based on these figures, the
proposed models match the real trace simulations with a high degree of accu-
racy, specially for the calibrated models. As we can see in these plots, in all
cases the calibrated models are the better match with the trace simulations.
As we expect, there are discrepancies in the model and trace simulation re-
sults for m1.small instance. However, the mean total cost for running the
given workload for all SIs is very accurate where the maximum relative error
is less than 3% for both calibrated and non-calibrated model, respectively.

Additionally, we report the model validation results where we use the new
price history from December 2010 to mid-February 2011 to see the quality
of the models for the future traces. The result of the simulations for the new
price history are plotted in Figure 11. The results reveal that our models
with three components still conform to the trace simulation results, except
for m1.small instance. As mentioned earlier, spot price for m1.small instance
is hard to fit and this is the reason of this inaccuracy. This means that for
m1.small, we should use the model with more components (e.g. k = 4) to get
the better accuracy. The calibrated models again match better with the trace
simulations in comparison to the non-calibrated models for all SIs. Besides,
the maximum relative error of the mean total cost for all SIs is less than
4% for both calibrated and non-calibrated model. Therefore, the proposed
models are accurate enough for the new price history as well.

9. Conclusions

We considered the problem of discovering models for Spot Instances in
Amazon’s EC2 data centers for spot price and the inter-price time. The main
motivation behind this is to explore characterization of SIs that is essential in
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the design of stochastic scheduling algorithms and fault tolerant mechanisms
(e.g. checkpointing and replication algorithms) in Cloud environments for
spot market. We studied the price patterns of the Amazon’s data centers for
a one year period and provided a global statistical analysis to get a better
understanding of these patterns. Based on this understanding and observed
bi-modality in probability densities, we proposed a model with mixture of
Gaussians distribution with 3 or 4 components for eight different types of
SIs. The proposed model is validated through simulations, which reveals
that our model predicts the total price of running jobs on spot instances
with a good degree of accuracy. We believe that the proposed model are
helpful for researchers and users of spot Instances in Amazon’s EC2 data
centers as well as other IaaS Cloud providers that look forward to offer such
a service in the near future.

In future work, we intend to consider the user’s bid as another parameter
and investigate how it can affect the distribution of failures. Moreover, we
would like to design a brokering solution to utilize different types of Cloud
resources to optimize the monetary cost as well as job completion time. This
can be easily realized by extending scheduling or resource provisioning com-
ponents of cloud application platforms such as Aneka [30] and incorporating
models and techniques proposed in this paper.
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