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Abstract. Resource provisioning is one of the main challenges in re-
source sharing environments such as multi-cluster Grids. In these envi-
ronments each cluster serves requests from external (grid) users along
with their own local users. The problem arises when there is not suffi-
cient resources for local users (which have higher priority than grid users)
to be served urgently. This problem could be solved by preempting re-
sources from grid users and allocating them to the local users. However,
resource preemption entails crucial side-effects such as decreasing re-
source utilization and increasing grid users’ response time. Considering
preemption side-effects, the question is that how we can minimize the
number of preemptions taking place in a resource sharing environment.
In this paper, we propose a preemption-aware scheduling policy for a
virtualized multi-cluster Grid in a way that the number of preemptions
is minimized. The proposed policy is based on the stochastic analysis of
routing in parallel non-observable queues which acts independent from
the availability information of each cluster. Simulation results indicate
that the proposed scheduling policy significantly decreases the number
of virtual machine (VM) preemptions (up to 22.5%) which affects both
resource utilization and average response time of grid requests.

1 Introduction

Resources provisioning for user applications is one of the main challenges in the
Resource sharing environments. Resource sharing environments enable sharing,
selection, and aggregation of resources across several Resource Providers (also
called clusters in this paper), which are connected through high bandwidth net-
work connections. Nowadays, heavy computational requirements, mostly from
scientific communities, are supplied by these resource providers. Examples of
production-level resource providers include DAS-2 [8], TeraGrid, and EGEE [14].

While the job abstraction for resource management is widely used in such
systems, Virtual Machine (VM) technology has emerged to enable another style
of resource management based on the lease abstraction. Due to advantages of
this form of management for resource sharing environments [12], we consider
a virtualized multi-cluster environment in this paper. Typically, in large-scale
resource sharing environments (e.g. InterGrid [4]) computational resources in
each cluster are shared between external (grid) users and local users. Hence,
resource provisioning in resource sharing environments is done for two different
types of users, namely: local users and grid users. Local users (hereafter termed



local requests), refer to users who ask their local cluster for resources. Grid users
(hereafter termed grid requests) are those users who send their requests to a
gateway to get access to larger amount of resources. Typically, local requests have
priority over grid requests in each cluster [5]. In other words, the organization
that owns the resources would like to ensure that its community has priority
access to the resources. In this circumstance, grid requests are welcome to use
resources if they are available. Nonetheless, grid requests should not delay the
execution of local requests.

In our previous research [2], we proposed preemption of grid requests in favor
of local requests to remove this contention. We demonstrated that preemption
decreases waiting time for local requests. However, the side-effects of preemption
is twofold:

– From the system owner perspective, preemption imposes a considerable over-
head to the underlying system and degrades resource utilization. This over-
head is more notable in circumstances that VMs are used for resource pro-
visioning [12].

– From the grid user perspective, preemption increases the response time of
the grid requests.

As a result, both resource owner and grid users benefit from fewer preemptions
in the system. We believe that with the extensive trend in applying VMs in dis-
tributed systems, and considering preemption as an outstanding feature of VMs,
it is crucial to investigate policies that minimize these side-effects. Therefore, the
main problem we are dealing with in this research is how to decrease the number
of preemptions that take place in a multi-cluster Grid environment.

In this paper, we propose a preemption-aware scheduling policy for a virtual-
ized multi-cluster Grid that distributes grid requests amongst different clusters
in a way that the number of preemptions minimizes. The proposed policy is
based on the stochastic analysis of routing in parallel non-observable queues.
This policy is a knowledge-free (i.e. it is not dependent to the availability infor-
mation of the clusters). Thus, this policy does not impose any overhead to the
system. In summary our paper makes the following contributions:

– Proposing analytical queuing model based on the routing in parallel non-
observable queues.

– Adapting the proposed analytical model to a preemption-aware scheduling
policy.

– Evaluating the proposed scheduling policy under realistic workload models.

The rest of this paper is organized as follows: In Section 2, an overview of
the considered environment is provided. Proposed analytical queuing model is
described in Section 3 which is followed by the preemption-aware scheduling
policy in Section 4. Performance of the proposed policy is reported in Section 5.
Then, in Section 6 related research work are introduced. Finally, conclusion and
future works are provided in Section 7.

2 Background and Context

We study our problem in the context of InterGrid [4] as a resource sharing en-
vironment. InterGrid aims to provide a software system that allows users to



Fig. 1. The Multi-cluster Grid based on the InterGrid concepts.

create execution environments for various applications on top of the physical in-
frastructure participating in Grid systems [4]. Peering arrangements established
between gateways enable the allocation of resources from multiple Grids to fulfill
the requirements of execution environments.

Figure 1, illustrates a scenario in which multiple Grids are interconnected
through InterGrid Gateways (IGGs). A Grid has predefined peering arrange-
ments with other Grids, which are managed by IGGs and through which IGGs
coordinate the adoption of InterGrid’s resources. An IGG is aware of the peer-
ing terms between Grids, selects suitable Grids that can provide the required
resources, and replies to requests from other IGGs.

The Local Resource Manager (LRM) is the resource manager in each cluster
and provision resources for local and grid requests. Resource provisioning in
clusters of InterGrid is based on the lease abstraction. A lease is an agreement
between resource provider and resource consumer whereby the provider agrees
to allocate resources to the consumer according to the lease terms presented by
the consumer [12]. Virtual Machine (VM) technology is used in InterGrid to
implement lease-based resource provisioning [12]. InterGrid makes one lease for
each user request.

In the InterGrid each request is contiguous and must be served within re-
sources of a single cluster. Each request has a type, number of VMs, duration,
and the deadline (optional). We consider several types of grid requests in In-
terGrid. These grid requests can broadly be classified as Best-Effort (BE) and
Deadline-Constraint (DC) requests. BE grid requests can be preempted in favor
of local requests. If there is not enough resources to start BE requests, they are
scheduled in the first available time-slot. DC grid requests cannot be preempted
if the deadline is tight. Additionally, DC requests are rejected if there is not
enough resources for them to start.

BE grid requests can be either Cancelable: which can be started at any time
and is terminated in the case of preemption; or Suspendable: which can be started
at any time and is rescheduled in later time-slot in the case of preemption. DC



grid requests can be Migratable: which are sent to another cluster inside the same
Grid in the case of preemption; or Non-preemptive: which cannot be preempted
at all. We also consider local requests of a cluster as Non-preemptive requests.
To see more details about different grid request types readers can refer to [2, 4].

3 Analytical Queuing Model
In this section we describe the analytical modeling of preemption in a multi-
cluster Grid environment based on routing in parallel queues [3]. This section
is followed by proposing a scheduling policy in IGG (gateway) built upon the
analytical model provided in this part.

The queuing model that represents a gateway along with several non-dedicated
clusters (i.e. clusters with shared resources between local and grid requests) is
depicted in Figure. 2. According to this figure, there are N clusters in a Grid
where each cluster j receives requests from two independent sources. One source
is a stream of local requests with arrival rate λj and the other source is a stream

of grid requests which are sent by the gateway with arrival rate Λ̂j . The gateway
receives grid requests from other peer gateways [4] (G1,..,Gg in Figure 2). There-
fore, grid request arrival rate to the gateway is Λ = Λ̄1 + Λ̄2 + ... + Λ̄g where
g indicates the number of gateways that potentially can send grid requests to
the gateway. Submitted local requests to cluster j must be executed on cluster
j unless the requested resources is occupied by another local request or a non-
preemptable grid request (see Section 2). The first and second moment of service
time of local requests in cluster j are τj and µj , respectively. On the other hand,
a grid request can be allocated to any cluster but it might get preempted later
on. We consider θj and ωj as the first and second moment of service time of grid
requests on cluster j, respectively. For the sake of clarity, Table 1 gives the list of
symbols we use in this paper along with their meaning. Indeed, the analytical

Table 1. Description of symbols used in the queueing model.
Symbol Description

N Number of clusters
Mj Number of computing elements in cluster j where 1 ≤ j ≤ N
Λ̄j Original arrival rate of grid requests to cluster j

Λ̂j Arrival rate of grid requests to cluster j after load distribution

Λ =
∑g
i=1 Λ̄i =

∑N
j=1 Λ̂j

θj Average service time of a grid request on cluster j
ωj Second moment of grid requests service time on cluster j

γj = θj · Λ̂j
Rj Average response time of grid requests on cluster j
λj Arrival rate of local requests to cluster j
κj Arrival rate of local requests plus grid requests to cluster j
τj Average service time of local requests on cluster j
µj Second moment of local requests service time on cluster j
ρj = τj ·λj
mj =

Λ̂j

κj
ωj +

λj

κj
µj

uj Utilization of cluster j (= γj + ρj)
rj Average response time of local requests on cluster j
ηj Number of VM preemptions that happen in cluster j
T Average response time of all grid requests
Tj Average response time of grid requests on cluster j

model aims at distributing the total original arrival rate of grid requests (Λ)
amongst clusters. In this situation if we consider each cluster as a single queue
and the gateway as a meta-scheduler that redirects each incoming grid request to
one of the clusters, then the problem of scheduling grid requests in the gateway
can be considered as a routing problem in distributed parallel queues [3].
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Fig. 2. Queuing model for resource provisioning in a Grid with N clusters.

Considering the mentioned situation, the goal of the scheduling in the gate-
way is to schedule the grid requests amongst the clusters in a way that minimizes
the overall number of VM preemptions in a Grid. Therefore, our primary objec-
tive function can be expressed as follows:

min

N∑
j=1

ηj (1)

However, minimizing the response time of requests is easier than the number of
preemptions in such a system. Furthermore, more researches have been under-
taken in similar circumstances to minimize the response time.

The most related research has been carried out by Li [9]. He has analyzed the
load distribution problem in a cluster in the presence of two types of requests
namely, local (dedicated) and grid (generic) requests. Nonetheless, Li’s goal of
optimization is minimizing the response time of grid (generic) requests whereas
our goal is minimizing the overall number of preemptions. The other significant
difference is that Li has solved the problem for a single cluster whereas our
problem is in the context of a multi-cluster Grid. Li has mentioned the analysis
of a multi-cluster system as a future direction of his work. From this perspective,
our research can be considered as the future work of Li’s research.

Although there are even more differences between our problem and the prob-
lem investigated by Li, we believe that this analysis can still be modified and
applied to solve our problem. More specifically, from the results of some ini-
tial experiments as well as results of our previous research [2] we noticed an
association between response time and number of VM preemptions in the sys-
tem. To assess the strength of association between response time and number
of VM preemptions we performed regression analysis between the two factors.
Result of the regression analysis shows a positive correlation between number
of VM preemptions in a cluster and response time of grid requests (regression
equation:R = 3.09 + 0.012η where R and η indicate the response time of grid
requests and number of VM preemptions). The regression analysis acknowledges
that decreasing response time can be also applied for the purpose of minimizing
the number of VM preemptions. Details of the modified analysis is discussed
over the next paragraphs.



To minimize the average response time of grid requests we should mini-
mize [7]:

T =
1

Λ

N∑
j=1

Λ̂j ·Tj (2)

where the constraint is: Λ̂1 + Λ̂2 + ... + Λ̂N − Λ = 0. The response time of grid
requests for each cluster j (Tj) is worked out based on Equation 3 by assuming
each cluster j as an M/G/1 queue [9]:

Tj =
1

1− ρj

(
θj +

κjmj

2(1− uj)

)
(3)

Lagrange multiplier method is used to minimize Equation 2. By solving the
above minimization problem, input arrival rate of each cluster is calculated based
on the Equation 4:

Λ̂j =
(1− ρj)
θj

− 1

θj

√
(1− ρj)(ωj(1− ρj)) + θjλjµj

2θj(1− ρj)z + (ωj − 2θ2j )
(4)

where z is the Lagrange multiplier.
Considering that Λ = Λ̂1 + Λ̂1 + ...+ Λ̂N , then z can be calculated using the

following Equation:

N∑
j=1

1

θj

√
(1− ρj)(ωj(1− ρj)) + θjλjµj

2θj(1− ρj)z + (ωj − 2θ2j )

=

( N∑
j=1

(1− ρj)
θj

)
− Λ

(5)

In fact, Equation 5 expresses the relation between different parameters of the
system in which z is unknown. By solving Equation 5 for all clusters and working
out z, Equation 4 can be solved. However, finding a generic closed form solution
in Equation 5 for finding z is impossible. Nonetheless, a numerical solution can
be found by searching z in range of [lb,ub] using a bisection algorithm [9]. For
this purpose, considering that Λ̂j ≥ 0 and from Equation 4 we can infer that:

z ≥ λjµj
2(1− ρj)2

+
θj

(1− ρj)
(6)

Therefore, for all 1 ≤ j ≤ N the lower bound (lb) of the interval is:

lb =
N

max
j=1

(
λjµj

2(1− ρj)2
+

θj
(1− ρj)

)
(7)

If we define φj(z) according to Equation 8:

φj(z) =
1

θj

√
(1− ρj)(ωj(1− ρj)) + θjλjµj

2θj(1− ρj)z + (ωj − 2θ2j )
(8)



and considering Equation 5, then we have:

N∑
j=1

φj(lb) ≥
( N∑
j=1

(1− ρj)
θj

)
− Λ (9)

The upper bound also can be worked out based on Equation 10. ub can be
reached by doubling lb up until the condition is met.

N∑
j=1

φj(ub) ≤
( N∑
j=1

(1− ρj)
θj

)
− Λ (10)

If condition in Equation 9 is not met, then we have to decrease lb by remov-
ing clusters which are heavily loaded. Load of a cluster j is comprised of local
requests that have been arrived and grid requests which are already assigned to
the cluster. The load can be calculated as follows.

ψj =
λjµj

2(1− ρj)2
+

θj
(1− ρj)

(11)

For the sake of simplicity, in Equation 12 we have assumed that ψ1 ≤ ψ2... ≤
ψN .

k∑
j=1

φj(ψk) ≥
( k∑
j=1

(1− ρj)
θj

)
− Λ (12)

It is worth mentioning that values bigger than k would not receive any grid
request from the gateway (i.e. Λ̂k+1 = Λ̂k+2 = ... = Λ̂N = 0).

4 Preemption-aware Scheduling Policy

In this section we discuss how the analysis mentioned in previous section can be
adapted as the scheduling policy for grid requests inside IGG.

In fact, the analysis provided in Section 3 was based on some widely used
assumptions. However, some of these assumptions do not hold for case of the
multi-cluster that we are investigating. Here, we state these assumptions and
discuss if they are hold in the multi-cluster scenario we encounter in InterGrid.
In the analysis provided in Section 3 we assumed that:

– each cluster was an M/G/1 queue. However, in InterGrid we are investigating
each cluster as a G/G/Mj queue.

– all requests needed one VM. However, in InterGrid we consider requests that
need several VMs for a certain amount of time.

– local requests could preempt grid requests. However, in InterGrid not all grid
requests are preemptable. In fact, if the grid request is Non-Preemptable (see
Section 2), it cannot be preempted by local requests.

– each queue is run in FCFS fashion. However, in order to improve the re-
source utilization we consider conservative backfilling [10] method in the
local schedulers.



Considering the above differences, we do not expect that the preemption-
aware scheduling policy performs optimally. In fact, we are trying to examine
how efficient the above analysis would be by substituting the above assumptions
with some approximations.

To adapt the analysis in a way that covers requests that need several VMs
we modify the service time of grid requests on cluster j (θj) and local requests
on cluster j (τj) in the following way:

θj =
v̄j · d̄j
Mjsj

(13)

τj =
ζ̄j · ε̄j
Mjsj

(14)

Algorithm 1: Preemption-Aware Scheduling Policy (PAP).

Input: Λ̄j ,θj ,ωj ,λj ,τj ,µj , for all 1 ≤ j ≤ N .
Output: (Λ̂j) load distribution of grid requests to different clusters, for all

1 ≤ j ≤ N .
1 for j ← 1 to N do

2 ψj =
λjµj

2(1−ρj)2
+

θj
(1−ρj)

;

3 Sort (ψ);
4 k ← 1;
5 while k < N do

6 if
∑k
j=1 φj(ψk) ≥

(∑k
j=1

(1−ρj)
θj

)
− Λ then

7 break;
8 else
9 k ← k + 1;

10 lb← ψk;
11 ub = 2 ∗ lb;

12 while
∑k
j=1 φj(ub) >

(∑k
j=1

(1−ρj)
θj

)
− Λ do

13 ub = 2 ∗ ub;
14 while ub− lb > ε do
15 z ← (lb+ ub)/2;

16 if
∑k
j=1 φj(z) ≥

(∑k
j=1

(1−ρj)
θj

)
− Λ then

17 lb← z;
18 else
19 ub← z;

20 for j ← 1 to k do

21 Λ̂j =
(1−ρj)
θj
− 1

θj

√
(1−ρj)(ωj(1−ρj))+θjλjµj

2θj(1−ρj)z+(ωj−2θ2j )
;

22 for j ← k + 1 to N do

23 Λ̂j = 0;



where v̄j and d̄j show the average number of VMs needed and average du-
ration of grid requests. ζ̄j and ε̄j show the average number of VMs needed and
average duration of local requests. Finally, sj shows the processing speed in clus-
ter j. This change also affects second moment of service time for both local and
grid requests. We can use coefficient of variance (CV = StDev/Mean) to obtain
the modified second moment. Assuming that CV is given, the second moment
of service time for grid and local requests on cluster j is calculated according to
Equation 15 and 16, respectively.

ωj = (αj · θj)2 + θ2j (15)

µj = (βj · τj)2 + τ2j (16)

where αj and βj show the CV of grid requests and local requests service
time on cluster j respectively.

The preemption-aware scheduling policy (PAP), which is built upon analysis
of Section 3, is shown in the form of pseudo-code in Algorithm 1. According to
Algorithm 1, at first ψ is calculated for all clusters. Then, in steps 3 to 9, to
exclude the heavily loaded clusters, clusters are sorted based on the ψ value in
the ascending order. Then, the value of k is increased up until condition defined
in Equation 12 (step 6) is met. ub is found by starting from 2· lb and is doubled
up until condition in step 12 is met. Steps 14-19 show the bisection algorithm
mentioned in Section 3 for finding proper value for z. Finally, in steps 20 and 21
the arrival rate to each cluster is determined. Steps 22 and 23 guarantee that
clusters k + 1 to N, which are heavily loaded, do not receive any grid request.

5 Performance Evaluation

In this section we discuss the scenario in which the experiments are carried
out, different performance metrics considered, and finally, experimental results
obtained from the simulations are discussed.

5.1 Experimental Setup

We use GridSim [13], a discrete event simulator, to evaluate performance of
the scheduling policies. We consider a Grid with 3 clusters with 32, 64, and 128
nodes with homogeneous computing speed sj = 1000 MIPS for all clusters. Each
cluster is managed by an LRM and a conservative backfilling scheduler. Clusters
are interconnected using a 100 Mbps network bandwidth. We assume all nodes
of each cluster as a single core with one VM. The maximum number of VMs in
the generated requests of each cluster does not exceed the number of nodes in
that cluster. We consider size of each VM, 1024 MB [15].

The overhead time imposed by preempting VMs varies based on the type
of grid leases involved in preemption [12]. For Cancelable leases the overhead
is the time needed to terminate the lease and shutdown its VMs. This time is
usually much lower than the time needed for suspending or migrating leases [12].
In our experiments, suspension time (ts) and resumption time (tr) are 160 and
126 seconds, respectively [12]. The time overhead for transferring (migrating) a
VM with similar configuration is 165 seconds [15].



Baseline Policies For the sake of comparison, we evaluate the proposed schedul-
ing policy (PAP) against other two policies which are described below:

– Round Robin Policy (RRP): In this policy IGG distributes grid requests
between different clusters of a Grid in a round-robin fashion with a deter-
ministic sequence. Formally, this policy is demonstrated as Λ̂j = Λ/N

– Least Rate Policy (LRP): In this policy the rate of grid requests submitted
to each cluster has inverse relation with arrival rate of local requests to
that cluster. In other words, clusters that have larger rate of incoming local
requests would be assigned less number of grid requests by IGG. Formal
presentation of the policy is as follows:

Λ̂j = (1− λj∑N
j=1 λj

)·Λ (17)

We have also implemented PAP with the following details:

– We assumed that in step 16 of Algorithm 1 the precision is 1 (ε = 1).
– In Equations 15 and 16, to work out the second moment of service time for

local and grid requests, we assumed that in all clusters αj = βj = 1 (i.e. CV
of service time for both grid and local requests is 1).

– We believe that users mostly request for Suspendable and Nonpreemptable
types. Therefore, in the experiments we consider: BE-Suspendable:40%; BE-
Cancelable:10%; DC-Nonpreemptable:40%; and DC-Migratable:10%. These
request types are uniformly distributed in grid requests.

Workload Model In the experiments conducted, DAS-2 workload model [8]
has been configured to generate two-day-long workload of parallel requests. This
workload model is based on the DAS-2 multi-cluster in the Netherlands.

We intend to study the behavior of different policies when they face workloads
with different characteristics. More specifically, we study situations where grid
requests have:

– different number of requested VMs: In this case for grid requests, we keep
average duration=30 minutes and average arrival rate=1.0.

– different request duration: In this case for grid requests, we keep average
number of VMs=3.0 and average arrival rate=1.0.

– different arrival rate: In this case for grid requests, we keep average number
of VMs=3.0 and average duration=30 minutes.

Each experiment is performed on each of these workloads separately for 30 times
and the average of the results is reported. To generate these workloads, we modify
parameters of DAS-2 model. Local and grid requests have different distributions
in each cluster. Based on the workload characterization [8], the inter-arrival time,
request size, and request duration follow Weibull, two-stage Loguniform, and
Lognormal distributions, respectively. These distributions with their parameters
are listed in Table 2. To find the mean number of VMs per request, we need the
probability of different number of VMs in the incoming requests. Assume that
Pone and Ppow2 are probabilities of request with one VM and power of two VMs
in the workload, respectively. So, the mean number of virtual machines required



Table 2. Input parameters for the workload model.

Input ParameterDistributionValues Grid Requests Values Local Requests
No. of VMs Loguniform (l = 0.8, 1.5 ≤ m ≤ 3, h = 5, q = 0.9)(l = 0.8,m = 3, h = 5, q = 0.9)

Request Duration Lognormal (1.5 ≤ a ≤ 2.6,b = 1.5) (a = 1.5,b = 1.0)
Inter-arrival Time Weibull (0.7 ≤ α ≤ 3,β = 0.5) (α = 0.7, β = 0.4)

Pone N/A 0.2 0.3
Ppow2 N/A 0.5 0.6

by requests is given by Equation 18. Therefore, we are able to calculate the mean
request size in Equations 13 and 14.

v̄j = Pone + 2dre(Ppow2) + 2r (1− (Pone + Ppow2)) (18)

where r is the mean value of the two-stage uniform distribution with parameters
(l,m, h, q) as listed in Table 2 and can be found as follows:

r =
ql +m+ (1− q)h

2
(19)

5.2 Experimental Results

Number of VM Preemptions As mentioned earlier, both resource owners
and users benefit from fewer VM preemptions. From the resource owner per-
spective, fewer preemption leads to less overhead for the underlying system and
improves the utilization of resources. From the user perspective, however, pre-
empting grid leases has different impacts based on the lease types. For Suspend-
able and Migratable leases, preemption leads to increasing completion time. For
Cancelable leases preemption results in terminating that lease. Since users of
different lease types have distinct expectation from the system, it is not easy
to propose a common criterion to measure user satisfaction. Nonetheless, in all
types of leases grid users suffer from lease preemption. Therefore, we believe that
the number of VM preemptions in a Grid is a generic enough metric to express
grid users’ satisfaction.

In this experiment we report the number of VMs getting preempted by ap-
plying different scheduling policies. As we can see in all sub-figures of Figure 3,
the number of VMs preempted almost linearly increases by increasing the av-
erage number of VMs (Figure 3(a)), duration (Figure 3(b)), and arrival rate of
grid requests (Figure 3(c)).

In all cases PAP outperforms other policies specially when the average num-
ber of VMs increases or when duration of grid requests increases. Nonetheless,
we observe less difference between the PAP and two other policies when the
inter-arrival time of grid requests increases (Figure 3(c)). In all cases the dif-
ference between PAP and other policies become more significant when there is
more load in the system which shows the efficiency of PAP when the system is
heavily loaded. In the best situation (in Figure 3(b) where the average duration
of grid requests is 55 minutes) we observe that PAP results in around 1000 less
VM preemptions which is 22.5% less than RRP.

Resource Utilization Time overhead due to VM preemptions leads to resource
under-utilization. Therefore, we are interested to see how different scheduling
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Fig. 3. Number of VMs preempted by applying different policies. The experiment is
carried out by modifying (a) the average number of VMs, (b) the average duration,
and (c) the arrival rate of grid requests.

policies affect the resource utilization. Resource utilization is defined as follows:

Utilization =
computationT ime

totalT ime
(20)

where:

computationT ime =

|L|∑
i=1

v(li)· d(li) (21)

where |L| is the total number of leases allocated, v(li) is the number of VMs in
lease li, d(li) is the duration of lease li.

In this experiment we explore the impact of preempting VMs on the resource
utilization as a system centric metric. In general, resource utilization resulted
from applying PAP is better than other policies as depicted in Figure 4. However,
the difference is more remarkable when the average number of VMs or arrival
rate of grid requests increases (Figures 4(b) and 4(c)). We observe that PAP
which cause fewer preemptions results in better resource utilization. This shows
the impact of VM preemption on resource utilization.

In Figure 4(b), we can see that in all policies resource utilization becomes
almost flat when grid requests become long (more than 40 minutes). The reason
is that when requests become long, the useful computation time dominates the
overhead of VM preemptions. We can infer that VM preemption does not signifi-
cantly affect resource utilization when requests are long (more than 40 minutes).
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Fig. 4. Resource utilization resulted from different policies. The experiment is carried
out by modifying (a) the average number of VMs, (b) the average duration, and (c)
the arrival rate of grid requests.

Average Response Time (ART) Preemption-based scheduling policies are
usually prone to long response time for Best-Effort requests (i.e. Suspendable
and Cancelable). Therefore, we are interested in ART metric to see how the
investigated scheduling policies affect response time of Best-Effort grid requests.



In fact, this metric measures the amount of time on average a Best-Effort lease
should wait beyond its ready time to get completed. ART in each cluster is
calculated based on the Equation 22.

ARTj =

∑
l∈∆(cl − bl)
|∆|

(22)

where ∆ is the set of Best-Effort leases. cl and bl show completion time and ready
time for lease l, respectively. Then, ART over all clusters of a Grid is defined as
follows:

ART =

∑N
j=1(Mj ·ARTj)∑N

j=1Mj

(23)

According to the results in Figure 5, we conclude that PAP results in better
ART for grid requests, which implies more grid user satisfaction. However, unlike
the previous experiments, the response time does not decrease significantly when
the duration of the grid requests increased (Figure 5(b)). The reason is that when
the requests become longer, the duration and waiting times of requests normally
become more dominant factor in calculating response time; in comparison with
the waiting times imposed because of preemption. Therefore, the number of VM
preemptions is not significantly effective on average response time of the leases,
particularly, when the average duration of leases is long.

Another interesting point in this experiment is that ART does not change
significantly by increasing the average number of VMs in the grid requests (Fig-
ure 5(a) after 3.5) or their inter-arrival time (Figure 5(c) after 1.6). The reason
is that in both cases by increasing average number of VMs of the grid requests
or their inter-arrival, more Deadline-Constraint grid requests and even more lo-
cal requests get rejected. This makes more places for other requests to fit in.
Therefore, although average number of VMs increase, ART does not increase or
even slightly decrease. For instance, in Figure 5(c), where the arrival rate for
grid requests is more than 1.6, we experience 13.5% improvement in ART.
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Fig. 5. Average response time resulted from different policies. The experiment is carried
out by modifying (a) the average number of VMs, (b) the average duration, and (c)
the arrival rate of grid requests.

6 Related Work

There are several research works that have investigated scheduling jobs/requests
in multi-cluster systems.

Assuncao et al. [5] have proposed adaptive partitioning of the availability
times between local and grid requests in each cluster. Each cluster submits its



availability information to the IGG periodically. Therefore, there is a communica-
tion overhead between IGG and clusters for submitting availability information.
Hence, there is a possibility that the availability information be imprecise which
results in deadline violation. However, our scheduling method does not impose
any communication overhead and does not rely on availability informations of
the clusters.

Huedo et al. [14] have investigated the usage of multiple meta-schedulers to
make loosely coupled connection between Grids. They use Gridway to migrate
jobs from a remote cluster when the job does not get the expected processing
power. However, they do not discuss how we can prioritize organization level
requests versus requests coming from other Grids.

Haizea [12] is a lease scheduler which schedules a combination of advanced
reservation and best effort leases. Haizea preempts best effort leases in favor of
advance reservation requests. Sotomayor et al. [12], have also investigated the
overhead time imposed by preempting a lease in Haizea. By contrast, we propose
a scheduling policy to decrease the number of preemptions in the system whereas
they focus on the overhead aspects of lease preemption. From this perspective,
our research can be considered as a complementary to Sotomayor et al. work.

Scojo-PECT [11] is a preemptive scheduler that aims at making a fair share
scheduling between different job classes of a Grid. The approach is applying
coarse-grain time sharing and suspending VMs on disk. However, the authors
do not consider the overhead of suspending VMs on disk in their evaluations.
The main difference with our work, however, is the goal of scheduling. We min-
imize the number of VM preemptions whereas Sodan et.al’s goal is fair share
scheduling.

Amar et al. [1] have added preemption to cope with the non-optimality in
on-line scheduling policies. The preemption policy prioritize jobs based on their
remaining time as well as the job’s weight. Our research is different with this
work in the sense that they do not consider the lease based resource provisioning.
Moreover, we try to minimize the number of preemption in a Grid where several
types of grid requests coexist.

Kettimuthu et al. [6] proposed a preemption policy, which is called Selective
Suspension, where an idle job can preempt a running job if the suspension factor
is adequately more than running job. The authors do not specify how to minimize
the number of preemptions, instead, they decide when to do the preemption.

7 Conclusions and Future Work

In this research we explored how we can minimize the side-effects of VM pre-
emptions in a virtualized multi-cluster resource sharing environment such as
InterGrid. We proposed a preemption-aware scheduling policy (PAP) in IGG
(as a meta-scheduler) to distribute grid requests amongst different clusters in
a way that minimizes the number of preemptions that take place in these clus-
ters. The proposed scheduling policy is a knowledge-free policy that does not
impose overhead to the underlying system. Experimental results indicate that
PAP resulted in up to 1000 less VM preemptions (22.5% improvement) compar-
ing with other policies in a two-day-long workload. This decrease in number of
VM preemptions improves the utilization of the resources and decreases average
response time of the grid requests (up to 13.5%).



We believe that our policy is extensively applicable in lease-based Grid/Cloud
resource providers where requests with higher priority coexist with other re-
quests. A nice application is in Cloud (IaaS) providers where there is certain
priorities between different users; and resource owners tend to minimize the
number of VM preemptions. In future we plan to investigate how IGG can con-
sider deadline and other QoS issues in its scheduling. Another extension would
be considering co-allocation of the incoming grid requests on different clusters
to further decrease the number of preemptions.
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