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Abstract­­­­The volume of generated data increases by the rapid growth of Internet of Things (IoT), leading 

to the big data proliferation and more opportunities for data centers. Highly virtualized cloud-based 

datacenters are currently considered for big data analytics. However big data requires datacenters with 

promoted infrastructure capable of undertaking more responsibilities for handling and analyzing data. Also, 

as the scale of the datacenter is increasingly expanding, minimizing energy consumption and operational 

cost is a vital concern. Future datacenters infrastructure including interconnection network, storage and 

servers should be able to handle big data applications in an energy-efficient way. In this chapter, we aim to 

explore different aspects of could-based datacenters for big data analytics. First the datacenter architecture 

including computing and networking technologies as well as data centers for cloud-based services will be 

illustrated. Then the concept of big data, cloud computing and some of the existing cloud-based datacenter 

platforms including tools for big data analytics will be introduced. We later discuss the techniques for 

improving energy efficiency in the cloud-based datacenters for big data analytics. Finally, the current and 

future trends for datacenters in particular with respect to energy consumption to support big data analytics 

will be discussed. 
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Acronyms:  

Acronym Definition Acronym Definition 

AIS All-In Strategy MMF Multi-Mode Fibers 

APU Accelerated Processing Unit MPI Message Passing Interface 

BDAS Berkeley Data Analytics Stack MtCO2e Metric tons of Carbon Dioxide equivalent 

BPaaS Business Process as-a-Service MW Mega Watt 

CEP Complex Event Processing NoSQL Not only SQL 

CPU Central Processing Unit NSM n-ary Storage Model 

CS Covering Set O/E Optical-to-Electrical 

DAaaS Data Analytic-as-a-Service OFDM Orthogonal Frequency-Division Multiplexing 

DAG Directed Acyclic Graph OS Operating System 

DBMS Database Management System PaaS Platform as-a-Service 

DCN Datacenter Network PB Petabytes 

DFS Distributed File System PB/s Petabytes per second 

DVFS Dynamic Voltage and Frequency Scaling PFLOPS Peta Floating-Point Operations Per Second 

E/O Electrical-to-Optical QoS Quality of Service 

FPGA Field-Programmable Gate Array RDBMS Relational Database Management System 

Gbps Gigabits per second SaaS Software as-a-Service 

GFS Google File System SAN Storage Area Network 

GPU Graphics Processing Unit SIMD Single-Instruction Multiple-Data 

HDFS Hadoop Distributed File System SQL Structured Query Language 

HPC High-Performance Computing Tbps Terabits per second (Tbps) 

HVAC Heating-Ventilation and Air-Conditioning TCP Transmission Control Protocol 

IaaS Infrastructure as-a-Service ToR Top-of-the-Rack 

IO (I/O) Input/Output UPS Uninterruptible Power Supply 

IoT Internet of Tings VM Virtual Machine 

IT Information Technology VMM Virtual Machine Monitor 

KaaS Knowledge as-a-Service WDM Wavelength Division Multiplexing 

kWh kilo-Watt hour   
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1. Introduction 

Due to the latest advances in information technology the volume of generated data further increases by 

the rapid growth of cloud computing and the Internet of Things (IoT). Widely distributed sensors in an IoT 

collect and transmit data that should be integrated, analyzed and stored. Such data referred as "Big Data", 

far surpasses the available computing capacity in quantity, heterogeneity, and speed. The emergence of big 

data brings excellent development opportunities to datacenters that are rapidly evolving. There is also a 

great attention to cloud services, virtualization solutions, and high-performance computing to boost service 

velocity and business agility, support big data analytics, and improve datacenter economics. Conventional 

computing systems are giving way to highly virtualized environments that reshape datacenter traffic flows 

and dramatically affect datacenter network designs  [61].   

Big data requires promotion of datacenter infrastructure in both hardware and software aspects. With 

the continued growth of the volumes of structured and unstructured data, the data processing and 

computing capacities of the datacenter shall be greatly enhanced. Although current datacenters provide 

hardware facilities and storage for data, it is crucial for them to undertake more responsibilities, such as 

acquiring, analyzing, and organizing the data  [24]. Also, as the scale of the datacenter is increasingly 

expanding, it is also an important issue on how to reduce the operational cost for the development of 

datacenters.  

Power consumption is a major concern in the design and development of modern datacenters. Although 

the performance per watt ratio has been constantly rising, the total power consumed by computing systems 

is hardly decreasing  [1]. It has been shown that in 2007, the worldwide demand for electricity was around 

330 Billion kWh from datacenters  [31]. This amount is similar to the electricity consumption in the whole UK. 

Given the demand for more datacenters and emergent of complex big data processing, it is estimated that 

the electricity consumption will be triple by 2020 (more than 1000 Billion kWh). This also has a major impact 

on the environment by greenhouse gas emissions. By 2020, the carbon footprint will be about 275 Metric 
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tons of Carbon Dioxide equivalent (MtCO2e) that is more than the double of what we had in 2007  [123]. 

Therefore, novel power-efficient technologies must be developed to minimize the power consumption in 

datacenters, especially to handle big data analytics. 

In this chapter, we aim to explore different aspects of could-based datacenters for big data analytics. In 

Section 2, datacenter architecture including computing and networking technologies as well as data centers 

for cloud-based services will be described. In section 3, the concept of big data, cloud computing some of 

the existing cloud-based datacenter platforms and tools for big data analytics will be introduced. Section 4 

discusses the techniques for improving energy efficiency in the cloud-based datacenters for big data 

analytic. Section 5 highlights the current and future trends for data centers in particular with respect to 

energy consumption to support big data analytics. Section 6 summarizes this chapter.  

2. Datacenter and Cloud Computing 

A datacenter is usually known as the infrastructure used by enterprises and is designed to host 

computing and networking systems and components for IT service demands. A datacenter typically involves 

storing, processing and serving large amounts of mission-critical data to clients in client/server architecture. 

Redundant or backup power supplies, cooling systems, redundant networking connections and security 

systems for running the enterprise's core applications are extensively needed in datacenters. Datacenter 

management requires the high reliability of both the connections to the datacenter as well as the information 

stored within the datacenter's storage. Scheduling of application workloads on the available compute 

resources cost-effectively is another issue that should be addressed in datacenters. Datacenter size in 

terms of energy consumption vary widely, ranging from 1 MW to more than 30 MW  [11]. 

2.1. Datacenter Architecture 
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The design of a datacenter is often divided into four categories as “Tier I–IV”. The 4-tier classification 

loosely based on the power distribution, uninterruptible power supply (UPS), cooling delivery and 

redundancy of the datacenter. Tier I datacenters have a single path for power distribution, UPS, and cooling 

distribution, without redundant components, while Tier II adds redundant components to enhance availability. 

Tier III datacenters have one active and one alternate distribution path for utilities that provide redundancy 

even during maintenance. Tier IV datacenters have two simultaneously active power and cooling distribution 

paths, redundant components in each path and are supposed to tolerate any single equipment failure 

without impacting the load  [11]. 

The high-level block diagram of a typical datacenter is shown in  Fig. 1. A datacenter consists of multiple 

racks hosting the servers connected through a Top-of-the-Rack Switch (ToR) which are further 

interconnected through aggregate switches in a tree topology. The datacenter network (DCN) interconnects 

a massive number of servers and provides routing service for the data flowing through the network among 

computing elements. The tree architecture is a well-known and common interconnection scheme in the 

current datacenters. However, it suffers from the problems of low scalability, high cost as well as a single 

point of failure. An interconnection network should be modular with a fast reconfiguration capability, and a 

high capacity and scalability  [41] [74]. In the current datacenters, the network is usually a canonical fat-tree 

Tier II or Tier III architecture ( Fig. 1)  [62] [71]. In the Tier III topologies (shown in the figure) one more level is 

applied in which the aggregate switches are connected in a fat-tree topology using the core switches. When 

a user issues a request, a packet is forwarded through the Internet to the front end of the datacenter. In the 

front end, the content switches and the load balance devices are used to route the request to the 

appropriate server. Most of the current datacenters are based on commodity switches for the 

interconnection network. The topology of the network interconnecting the servers significantly affects the 

agility and reconfigurability of the datacenter infrastructure to respond to changing application demands and 

service requirements  [79].  
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There are alternate approaches to scalable, cost-effective network architectures which can be grouped 

into fixed topology and flexible topology networks. Fixed topology networks can be further categorized into 

two topologies: tree-based topologies such as fat-tree  [1] [79] and Clos Network  [49], and recursive 

topologies such as DCell  [52] and BCube  [51]. Flexible topologies have the ability to adapt their network 

topology based on the traffic demand, at run time. Examples of such topologies include c-Through  [124], 

Helios  [41] and OSA  [28]. Every datacenter network has its unique approaches for network topology, routing 

algorithms, fault-tolerance, and fault recovery  [79]. 

Traditional datacenter architectures including networking and storage resources support the needs of 

specific client-server applications. The capability of existing datacenter for data processing is limited to 

compute and storage infrastructures within a local area network, e.g., a single cluster within a datacenter. 

Further, the conventional datacenters built for client-server computing lack in essential capabilities to meet 

the requirements of today’s highly virtualized compute environments; they cannot meet the performance 

and availability demands; make inefficient use of network resources; do not scale in a linear fashion; and are 

not well suited for the high-bandwidth, low-latency server-to-server traffic flows that is common in current 

datacenters  [61]. 

However, advances such as powerful multicore processor-based servers, virtualization, cloud and 

distributed computing are transforming the datacenters to incorporate new features. Today's datacenters 

contain thousands of switches and servers, run data-intensive applications from cloud services such as 

search, web email, to infrastructural computations such as MapReduce  [35]. Many IT organizations are 

consolidating compute, network, and storage resources and employing virtualization solutions and 

cloud-based services based on new networking models. 
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Fig. 1 A datacenter architecture  [71] 

2.2. Cloud Computing 

Cloud computing is the integration of computing and data infrastructures to provide a scalable, agile 

and cost-effective approach to supporting the ever-growing critical IT needs  [74]. Cloud computing relieves 

its users from the burdens of provisioning and managing their datacenters and allows them to pay for 

resources only when needed (i.e. pay-as-you-go). It provides more profit to both service providers who 

capitalize poorly utilized resources and users who only need to pay per their use. Furthermore, increasing 

the resource utilization results in less energy consumption and carbon footprint that can increase the 

economical profit of the cloud for providers  [1].  

Virtualization in Cloud Systems: Physical resources can be divided into a number of logical slices 

called virtual machines (VMs). Each VM can accommodate an individual operating system (OS) creating for 

Rack

ToR

Switch

Rack Rack Rack

Aggregate 

Switches

Aggregate 

Switches

Core

Switches

Core

Switches

10 Gbps

Server

Content switches & 

Load balance

10 Gbps

Internet

Datacenter



 

8 

 

the user a view of a dedicated physical resource and ensuring the performance and failure isolation between 

VMs that are sharing a single physical machine. The virtualization layer lies between the hardware and OS 

and, therefore, a virtual machine monitor (VMM) takes the control over resource sharing/multiplexing and 

has to be involved in the system’s power management  [1]. The virtualization technology provides the ability 

to encapsulate the workload in VMs and consolidate them to a single physical server. The consolidation has 

become especially effective after the adoption of multi-core CPUs in computing environments, as many VMs 

can be allocated to a single physical node leading to the improved utilization of resources and reduced 

energy consumption compared to a multi-node setup  [1] [60].  

2.3. Datacenters for Cloud Computing Services 

Datacenter infrastructure has been receiving significant interest due to their highlighted role in 

supporting the rapidly growing cloud-based applications. Datacenters including the computing, storage, and 

communication resources form the core of the support infrastructures for cloud computing. With the 

proliferation of cloud computing and cloud-based services, datacenters are becoming increasingly large with 

massive number of servers and a huge amount of storage. Server and even network virtualization are 

increasingly employed to make the datacenter flexible and adapt to varying demands  [74]. 

Multi-Cloud Systems: Datacenters based on the interconnection of multiple-cloud systems provide an 

opportunity to improve overall QoSs parameters by deploying and executing applications over a large 

cluster of resources  [38]. Such datacenters are heterogeneous, distributed, and highly uncertain. The 

system becomes more complicated where mobile devices are considered as cloud nodes as well. The 

availability, performance, and state of resources, applications and data may continuously change in a 

multi-cloud datacenter. Uncertainty is a fact in multi-cloud datacenter environments due to several reasons 

such as security attacks, network and resource failures, incomplete global knowledge among competing 

applications leading to non-optimized use of the resources and network bandwidth, etc. The current 
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data-intensive or big data application programming frameworks such as MapReduce and workflow models 

are inadequate to handle these issues  [34].  

3. Handling Big Data on Cloud-Based Datacenters 

Nowadays the data has reached in different directions in terms of size, type, and speed and has 

received wide attention as “Big Data”. The huge amount of data coming from various sources with different 

types and in high speeds needs appropriate infrastructure for efficient processing and knowledge discovery. 

Currently, datacenters incorporate new features such as virtualized computing in the cloud systems that 

make them a candidate platform for processing the big data.  

3.1. Big Data 

Big data refers to the large amounts (volume) of heterogeneous data (variety) that flows continuously 

(velocity) within data-centric applications. We can classify big data requirements based on its five main 

characteristics  [64]: 

� Volume: This is the primary characteristic of big data, refers to the large size (Tera or Petabytes) of 

records, transactions, tables, files, video, web text, and sensor logs, etc. As the size of data to be 

processed is large, it needs to be broken into manageable chunks. Data needs to be processed 

simultaneously across multiple systems and several program modules. 

� Variety: The big data comes from a great variety of sources. Data of different formats, types and 

structures needs to be processed using efficient solutions.  

� Velocity: It refers to the frequency of data generation or the frequency of data delivery. The stream 

of data acquired via multiple sources needs to be processed at a reasonable speed. 

� Ambiguity: Big data is ambiguous by nature due to the lack of relevant metadata and context in 
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many cases. For example, "M" and "F" in a data set can mean, Monday and Friday, male and female, 

or mother and father, respectively.  

� Complexity: Big data complexity needs to use many algorithms to process data quickly and 

efficiently. Several types of data need multi-step processing, and the scalability is extremely important 

as well. Processing large-scale data requires an extremely high-performance computing environment 

that can be easily managed and its performance can be tuned with linear scalability.  

Big data analytics describes the process of performing complex analytical tasks on data that typically 

includes grouping, aggregation, or iterative processes. The increase in the amount of data raises several 

issues for analysis software: 1) The amount of data is increasing continuously at a high speed, yet data 

should be up-to-date for analysis tasks, 2) The response time of a query grows with the amount of data.  

 

Fig. 2 The flow of big data processing 
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At the same time, latencies must be reduced to provide actionable intelligence at the right time, 3) Analysis 

tasks need to produce query results on large data sets in an adequate amount of time  [106]. 

 Fig. 2 shows a typical flow for the big data processing. The first step after the acquisition of data is to 

perform fusion/integration of the data coming from multiple sources. Data cleaning is the next step that may 

consume large processing time though it may significantly reduce the data size that leads to less time and 

effort needed for data analytics. The raw data is normally unstructured that neither has a pre-defined data 

model nor is organized in a pre-defined manner. Thus, the data is transformed to semi-structured or 

structured data in the next step of the flow  [97]. 

The main phase of big data processing is to perform discovery of data, which is where the complexity of 

processing data lies. A unique characteristic of big data is the manner in which the value is discovered. It 

differs from conventional business intelligence, where the simple summing of known values generates a 

result. The data analytics is performed through visualizations, interactive knowledge-based queries, or 

machine learning algorithms that can discover knowledge  [31]. Due to the variant nature of the data there 

may not be a single solution for the data analytics problem so, the algorithm may be short-lived. 

3.2. Big Data and Cloud Computing 

As aforementioned, cloud computing allows access to information and computer resources from 

anywhere that a network connection is available. It supplies large networks of virtualized services: hardware 

resources (CPU, storage, and network) and software resources (e.g., databases, load balancers). The 

datacenter cloud facilitates virtual centralization of application, computing, and data. Nowadays, shifting the 

big data applications from the physical infrastructure into the virtualized datacenters in computational clouds 

is a major trend  [34]. While cloud computing optimizes the use of resources, it does not provide an effective 

solution hosting big data applications yet. Gartner’s Inc. Hype Cycle states that cloud computing and big 

data are the fastest growing technologies that dominate the research world for the next decade  [105]. 
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 Fig. 3 shows the high-level components that are building blocks of the next-generation cloud-based 

datacenters supporting big data  [72] [97]. The lowest layer represents various forms of the data generated by 

different sources. The next layer interfaces data stream moving toward datacenter cloud system. It may 

involve real-time processing of data and technologies such as Complex Event Processing (CEP [ [102]]) as 

well. The next tier represents the technologies that will be used in integrating, cleaning and transforming the 

data to multiple types and sources of data. Storage and distributed data management technologies such as 

NoSQL for unstructured and semi-structured data and the relational database management system 

(RDBMS) for structured data are represented in the next tier. The topmost layer indicates the analytical layer 

that will be used to drive the needs of the big data analytics. 

 

Fig. 3 Components of next generation cloud-based datacenter 
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upper layer software as a service and, on top of it, business processes as a service can be built. Big data 

can be defined as a Data Analytic as-a-Service (DAaaS), an additional cloud layer located between Platform 

as-a-Service (PaaS) and Software as-a-Service (SaaS) layers. Some of the data analytics functionalities 

can be implemented through existing tools in SaaS and can be used with minor customizations, or through 

the software developed in PaaS. Furthermore, most of the cloud services offering big data capabilities can 

be classified as Infrastructure as-a-Service (IaaS), with minor exceptions. It is because different platforms 

tend to cover all aspects of big data from data capturing to storage and analysis, and they include the 

underlying infrastructure needed to handle all the required capabilities, particularly thos of the storage. 

Despite rather remarkable number of cloud-based big data solutions that have been released on the 

market (e.g. OpenCrowd  [100], Infochimps Platform  [66], Opani  [100] and PiCloud  [102], Oracle big data 

appliance  [95] [34], and IBM Infosphere BigInsights  [64]), many of them fall shortly of big data challenge. It is 

therefore required to provide computing infrastructures such as specialized datacenters, software 

frameworks, data processing technologies and distributed storage system specifically optimized for big data 

applications. 

 

Fig. 4 Big data functionalities in the Cloud service model [5] 

DAaaS
Data Analytics

as a Service

BPaaS
Business Process 

as a Service

KaaS
Knowledge as a 

Service

Data 

Integration 

and 

Aggregation

Data 

Collection, 

Cleaning, 

Analysis & 

Interpretation PaaS
Platform as a Service

SaaS
Software 

as a Service

Data StorageIaaS
Infrastructure as a Service



 

14 

 

3.3. Big Data Analytics on Datacenters 

The major driver for modern datacenters is analysing of large-scale and massive data sets  [11]. So 

datacenters need to have adequate infrastructure such as interconnection networks, storage and servers to 

handle big data applications. While these resources are currently used in datacenters, they should be 

evaluated for handling a new type of data-centric applications. In the following, these resources including 

power consumption as a main concern for future datacenters will be reviewed. 

3.3.1. Interconnection Networks 

The interconnection network in datacenters is the core for supporting big data and is the most important 

infrastructure that needs urgent attention. Big data applications transfer large-scale data to datacenters for 

processing and analysis. So we need to consider two types of interconnection: Inter-Datacenter connection 

and Intra-Datacenter connection.  

(i) Inter-Datacenter connection: This is the connection from the outside world to the datacenter, which 

is normally based on the existing network infrastructure (i.e., Internet). The modern physical infrastructure 

for most of the countries is the high-bandwidth fiber optic interconnections that can handle the rapid growth 

of data size. The common architecture in these interconnections is IP-based wavelength division 

multiplexing (WDM), which is based on multiple optical carriers multiplexing in different wavelength  [41]. In 

this technology, each optical fiber can carry several signals with a different wavelength and, therefore, 

increase the network bandwidth. While most of the WDM-based networks have deployed with the bandwidth 

of 40Gbps, recently a new standard for 100Gbps is introduced to address the demand for the high-speed 

Inter-datacenter connection  [8].   

Since WDM technology is limited by the bandwidth of the electronic bottleneck, a new technology called 

orthogonal frequency-division multiplexing (OFDM) is introduced. OFDM is a multi-carrier parallel 

transmission technology, which divides the high-speed data flow into low-speed sub-data flow to transmit 
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them over multiple orthogonal sub-carriers  [7]. This makes OFDM more flexible and efficient compared with 

the WDM technology and more promising for Inter-datacenter connection that is dealing with big data 

transferring.  

(ii) Intra-Datacenter connection: Intra-Datacenter connection is used to transfer the data within a 

datacenter. As mentioned earlier, most of the current datacenters consist of high-performance servers 

interconnected with commodity switches in a multi-level fat-tree topology  [11]. While servers in each rack 

are connected through 1Gpbs links, all the rack servers are interconnected through a set of 10Gbps 

switches. Finally, these switches will be connected through a set of core switches with 100Gbps links (using 

a bundle of 10Gbps links). Although this architecture is scalable and fault-tolerant, power consumption is the 

main issue. The other issue in this architecture is the high-latency due to multiple store-and-forward in the 

switches hierarchy. For big data applications, we need a network technology for Intra-datacenter connection, 

which can provide high throughput, low latency, and low energy consumption.  

To solve these issues, optical networks recently have received great attention as an alternative for 

interconnection networks in datacenters to address the demands of big data analytics. Currently, optical 

networks are only used for point-to-point communications in datacenters where the links are based on 

low-cost multimode fibers (MMF) for short-reach communications  [71]. The desired future architecture for 

intra-datacenter interconnection will be all-optical connections with switching in the optical domain as shown 

in  Fig. 5. In this technology electrical-to-optical (E/O) and optical-to-electrical (O/E) transceivers will be 

completely removed, which are the main source of power consumption in the current architecture. Therefore, 

all-optical interconnection networks can provide bandwidth in Terabits per second (Tbps) scale with low 

power consumption for future datacenter networks. 

3.3.2. Storage 
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An efficient storage mechanism for big data is an essential part of the modern datacenters. The main 

requirement for big data storage is file systems that is the foundation for applications in higher levels. The 

Google File System (GFS) is a distributed file system for data-centric applications with robustness, 

scalability and reliability  [41]. GFS can be implemented in commodity servers to support large-scale file 

applications with high performance and high reliability. Colossus is the next generation of GFS with better 

reliability that can handle small files with higher performance  [88]. 

 

Fig. 5 Point-to-point vs. all-optical interconnections [53] 
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above-mentioned file systems are the results of many years research and practice so can be utilized for big 

data storage. 

The second component in big data storage is a database management system. Although database 

technology has been advancing for more than 30 years, they are not able to meet the requirements for big 

data. Non-traditional relational databases (NoSQL) are a possible solution for big data storage, which are 

widely used recently. In the following, we review the existing database solutions for big data storage in three 

categories: key-value databases, column-oriented databases, and document-oriented databases. 

Key-values databases normally have simple data model and data is stored based on key-values. So 

they have a simple structure with high expandability and performance compared to relational databases. 

Column-oriented databases use columns instead of the row to process and store data. In these databases, 

both columns and rows will be distributed across multiple nodes to increase expandability.  

Table 1. List of databases for big data storage in datacenters 

Database Type Description 

Amazon: 

Dynamo  [34] 

key-value databases A distributed, high reliable, and scalable database systems used by 

Amazon for internal applications. 

Voldemort  [115] key-value databases A storage system used in LinkedIn website. 

Google: 

Bigtable  [26] 

column-oriented 

databases 

A distributed storage system used by several Google produces, which as 

Google Docs, Google Maps, and Google search engine. Bigtable can 

handle data storage in the scale of petabytes using thousands of servers. 

Cassandra  [74] column-oriented 

databases 

A storage system developed by Facebook to store large-scale structured 

data across multiple commodity servers. Cassandra is a decentralized 

database that provide high availability, scalability, and fault-tolerance. 

Amazon Simple 

DB  [91] 

document-oriented 

databases 

A distributed database designed for structured data storage and provided 

by Amazon as the web service.  
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CouchDB  [5] document-oriented 

databases 

Apache CouchDB is document-based storage system where JavaScript 

is used to query and manipulate the documents. 

Document-oriented databases are designed to handle more complex data forms. Since documents can 

be in any modes (i.e., semi-structured data), so there is no need for mode migration.  Table 1 shows the list 

of big data storages that are classified into three types. These databases are available to handle big data in 

datacenters and Cloud computing systems. 

3.3.3. Processing and Analysis Tools and Techniques 

Big data processing is a set of techniques or programming models to access large-scale data to extract 

useful information for supporting and providing decisions. In the following, we review some tools and 

techniques, which are available for big data analysis in datacenters. 

As mentioned in previous section, big data usually stored in thousands of commodity servers so 

traditional programming models such as Message Passing Interface (MPI)  [113] cannot handle them 

effectively. Therefore, new parallel programming models are utilized to improve the performance of NoSQL 

databases in datacenters. MapReduce  [35] is one of the most popular programming models for big data 

processing using large-scale commodity clusters. MapReduce is proposed by Google and developed by 

Yahoo. Map and Reduce functions are programmed by users to process the big data distributed across 

multiple heterogeneous nodes. The main advantage of this programming model is simplicity, so users can 

easily utilize that for big data processing. A certain set of wrappers is being developed for MapReduce. 

These wrappers can provide a better control over the MapReduce code and aid in the source code 

development. Apache Pig is an SQL-like environment developed at Yahoo  [98] is being used by many 

organizations like Yahoo, Twitter, AOL, LinkedIn, etc. Hive is another MapReduce wrapper developed by 
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Facebook  [118]. These two wrappers provide a better environment and make the code development simpler 

since the programmers do not have to deal with the complexities of MapReduce coding.  

Hadoop  [112] [119] is the open-source implementation of MapReduce and is widely used for big data 

processing. This software is even available through some Cloud providers such as Amazon EMR to create 

Hadoop clusters to process big data using Amazon EC2 resources  [2]. Hadoop adopts the HDFS file system, 

which is explained in previous section. By using this file system, data will be located close to the processing 

node to minimize the communication overhead. Windows Azure also uses a MapReduce runtime called 

Daytone  [10], which utilized Azure’s Cloud infrastructure as the scalable storage system for data processing. 

There are several new implementations of Hadoop to overcome its performance issues such as 

slowness to load data and the lack of reuse of data  [58] [59]. For instance, Starfish  [58] is a Hadoop-based 

framework, which aimed to improve the performance of MapReduce jobs using data lifecycle in analytics. It 

also uses job profiling and workflow optimization to reduce the impact of unbalance data during the job 

execution. Starfish is a self-tuning system based on user requirements and system workloads without any 

need from users to configure or change the settings or parameters. Moreover, Starfish’s Elastisizer can 

automate the decision making for creating optimized Hadoop clusters using a mix of simulation and 

model-based estimation to find the best answers for what-if questions about workload performance. 

Spark  [132] developed at the University of California at Berkeley, is an alternative to Hadoop, which is 

designed to overcome the disk I/O limitations and improve the performance of earlier systems. The major 

feature of Spark that makes it unique is its ability to perform in-memory computations. It allows the data to 

be cached in memory, thus eliminating the Hadoop’s disk overhead limitation for iterative tasks. The Spark 

developers have also proposed an entire data processing stack called Berkeley Data Analytics Stack 

(BDAS)  [17]. 

Similarly, there are other proposed techniques for profiling of MapReduce applications to find possible 

bottlenecks and simulate various scenarios for performance analysis of the modified applications  [59]. This 
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trend reveals that using simple Hadoop setup would not be efficient for big data analytics and new tools and 

techniques to automate provisioning decisions should be designed and developed. This possibly can be a 

new service (i.e., Big Data Analytics as-a-Service) that should be provided by the Cloud providers for 

automatic big data analytics on datacenters. 

In addition to MapReduce, there are other existing programming models that can be used for big data 

processing in datacenters such as Dryad  [68] and Pregel  [87]. Dryad is a distributed execution engine to run 

big data applications in the form of directed acyclic graph (DAG). Operation in the vertexes will be run in 

clusters where data will be transferred using data channels including documents, TCP connections, and 

shared memory. Moreover, any type of data can be directly transferred between nodes. While MapReduce 

only support single input and output set, users can use any number of input and output data in Dryad. Pregel 

is used by Google to process large-scale graphs for various purposes such as analysis of network graphs 

and social networking services. Applications are introduced as directed graphs to Pregel where each vertex 

is modifiable, and user-defined value and edge show the source and destination vertexes. 

3.3.4. Platforms for Big Data Analytics  

Solutions for the issue of the growing computation power required by big data analytics fall in two 

different categories. On approach is to scale the current systems and the other one is to look for more 

suitable and efficient systems as a substitution for current servers. Scaling is the ability of the system to 

adapt to increased demands for big data processing. Horizontal scaling and vertical scaling are two general 

approaches.  

(i) Vertical scaling (also known as scale up) includes empowering machines with more memory and 

higher performance processors as well as involving specialized hardware such as accelerators. The most 

popular vertical scale up paradigms are multicore processors, Graphics Processing Unit (GPU), Accelerated 

Processing Units (APUs), Field-Programmable Gate Array (FPGA) and High-Performance Computing 
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(HPC) clusters. HPC clusters  [21], also called as blades or supercomputers, are machines with thousands 

of cores. They can have a different variety of disk organization, cache, communication mechanism, etc. 

depending upon the user requirement. MPI is typically used as the communication scheme for such 

platforms  [113]. Since there are software and programming tools that for easy of vertical scaling (e.g. having 

multi-core processors, GPUs) easy, most of the software can take advantage of it transparently. However, 

vertical scaling needs substantial financial investments at one point in time. Furthermore, to cope with future 

workloads, the system needs to be adequately powerful, and initially, the additional performance goes to 

waste.  

(ii) Horizontal scaling includes extending clusters by adding more servers and distributing the work 

across many servers, which are usually commodity machines. This increases performance in smaller steps, 

and the financial investment to upgrade is by far smaller. However, to use these large clusters and many 

servers efficiently, analysis software (parallel programming utilities) on top them has to be developed to 

handle distribution by itself. Parallel programming uses a divide and conquer approach to breaking down the 

application into independently processable partitions and send for distributed machines for processing. After 

finishing the process, the intermediate results have to be merged into a final result. Synchronization among 

the parallel processors is one of the essentials  [106]. Different approaches have evolved for horizontal 

scaling over the time: parallel systems using an SQL-like interface and massive data analysis systems. 

Some of the prominent horizontal scale-out platforms include peer-to-peer networks  [91] [115], Parallel 

Database Systems, Hyracks  [18], Stratosphere  [12], since they are samples of infrastructures and tools that 

support horizontal scaling and provide the facilities to use many machines available in a cluster.  

Peer-to-Peer Networks  [91]  [115] are decentralized and distributed network architecture including 

millions of connected machines. Each node (machine) in the network serves as well as consumes resources. 

MPI is the typical communication approach for exchanging the data among nodes. In this structure, scaling 

out can be unlimited (in case of support of software). The major challenge of these networks is in the 
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communication among different nodes. In case of initiating broadcasting messages in such a network, the 

messages are sent from a root that is an arbitrary in the form of a spanning tree over the network. The 

broadcasting messages are cheaper than the aggregation of data/results that are much more 

expensive.  [113]. 

Parallel DataBase Management Systems such as GRACE  [42], Gamma  [36] and Teradata  [117] are 

pioneers of parallel relational database systems. Classical database management systems (DBMSs) use an 

n-ary storage model (NSM) to provide intra record locality. A relation consists of tuples with a defined set of 

attributes. Gamma  [36] is a parallel relational database machine that exploits dataflow query processing 

techniques. Each operator in a relational query tree is executed by one or more processes. The scheduler 

places these processes on a combination of processors with and without disk drives. In Gamma’s hardware 

design, associated with each disk drive there is a processor, and the processors are interconnected via an 

interconnection network. This design provides high disk bandwidth and permits the I/O bandwidth to be 

expanded incrementally. GRACE  [42] is a parallel relational database system adopting data stream-oriented 

processing. Teradata  [117], is a commercial system of that has built a database management system for 

decision support using a parallel architecture and multiple processors.  

Hyracks  [18] is a data parallel platform for data-intensive computations that has been developed by the 

computer science group of the University of California, Irvine. It features a parallel dataflow execution model. 

Jobs are specified as directed acyclic graphs composed of operators, represented as nodes, and 

connectors, represented as edges. Hyracks abstracts the MapReduce data model and uses tuples with 

fields of arbitrary types.  

Stratosphere  [12] system has been built by a research team comprised of TU Berlin, HU Berlin, and 

HPI Potsdam since 2008, consists of the PACT programming model and the massively parallel execution 

engine Nephele. The PACT programming model is a generalization of the MapReduce programming model 

and operates on a key/value data model. 
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On the other hand, according to some of current studies, current servers do not match well with the 

computational requirement of big data analytics. Therefore, they suggest looking for more efficient hardware 

platforms for future servers such as Micro-servers  [6] [8] [111] [83] [121] [81], Scale-Out 

Processors  [5] [42] [54] [84] and System-Level Integration  [79].  

4. Energy Efficiency in Datacenters for Big Data Analytics 

Today, datacenters and servers consume enormous amounts of energy and, therefore, improving 

energy consumption in datacenters is crucial. In a typical datacenter, servers, storage, and network devices 

consume around 40%, 37% and 23% of the total IT power, respectively  [49]. Handling big data in 

datacenters has strong impacts on the power consumption of all three components. In addition, increase of 

power consumption in datacenters raises the power usage of the HVAC equipment (Heating-Ventilation and 

Air-Conditioning) to keep the whole system at the working temperature. Therefore, by improving the power 

efficiency of any component in datacenters, the overall power consumption decreases significantly due to 

indirect power saving in the HVAC equipment. Reducing power consumption in hardware and network 

architecture  [85] [88] [1], and smart cooling technologies  [102] are effective methods to save energy in 

datacenters. It has been shown that saving 1.0 Watt power in the IT devices will save around 2.5 Watt in the 

total power  [63]. These evidence indicate that we are in an urgent need for new technologies and 

techniques to improve the power consumption of datacenters especially in the presence of big data 

applications. 

In a highly-connected datacenter, in practice only a few devices are working at a given time. Therefore, 

a significant amount of energy can be saved if we can power off those idle devices. Intel Research proposed 

a proxy architecture that uses a minimal set of servers to support different forms of idle-time behavior for 

saving energy  [95]. In such case, the routing can be adjusted so that data traffic flow through a certain set of 

devices.  
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As the network interconnect infrastructure is a significant energy consumer in datacenters, therefore, it 

is essential to develop intelligent techniques to manage network resources efficiently. Further, optical 

interconnection networks provide a solution for scalable architectures with optimized energy-efficiency  [22].  

In the virtualized datacenters, one possible way of reducing energy consumption is to optimize network 

topologies established between VMs and thus reduce the network communication overhead and the load of 

network devices steadily. A reduction in the transition overhead caused by switching between different 

power states and the VM migration overhead can also greatly advance the energy-efficient resource 

management.  [105] proposes consolidation of applications for significant reduction in energy consumption of 

cloud-based systems. As VMs are increasingly populating the datacenter (42% more per year  [53]), by 

migrating VMs to proper servers the number of active and operating servers can be reduced  [123].  

In the Cloud federations comprising geographically distributed datacenters, efficient distribution of the 

workload across geographically distributed datacenters can reduce the costs by dynamically reallocating the 

workload to a place where the computing resources, energy and/or cooling are cheaper (e.g., solar energy 

during daytime across different time zones). Moreover, a power-aware OS can monitor the overall system’s 

performance and appropriately apply power management techniques (e.g. dynamic voltage and frequency 

Scaling- DVFS) to the system components  [1]. 

Regarding the low-level system design, it is important to improve the efficiency of power supplies and 

develop hardware components supporting the performance scaling proportionally to the power consumption. 

It is also necessary to develop energy-efficient resource management approaches that leverage multi-core 

CPUs due to their wide adoption. In this section, we discuss some energy-efficient approaches for big data 

processing.  Fig. 6 shows the general approaches for energy-efficient big data processing. The approaches 

can be broadly divided into two groups. One group focuses on energy-aware scaling of datacenters 

including both vertically and horizontally. The second group believes in a new architecture for servers as a 

replacement for currently used machines for energy enhancement. This is because, according to some 
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studies the architectures of current servers does not match well with the computational requirements of big 

data processing applications. Using low-power processors (micro-servers), more system-level integration, 

and a new architecture for servers processors are some of the solutions that have been discussed recently 

as an energy-efficient replacement for current machines. 

4.1. Energy-Efficient Scaled Datacenters  

In this section, we discuss some energy-efficient scaling approaches including both horizontally and 

vertically. In these approaches, while the system is scaled to support computational requirements for big 

data processing, the efficiency of the system in term of energy is taken into account as well. The 

energy-efficient horizontally scaled approaches mainly focus on MapReduce programming model and 

scheduling as well as Distributed File System (DFS) or both. In vertical scaling, FPGAs and GPUs are 

considered as accelerators for enhancing energy efficiency. 

 

 

Fig. 6 Classification of various approaches for energy-efficient big-data processing 
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4.1.1. Horizontally Scaled Systems 

MapReduce is used widely by many industries for big data processing through spreading data across 

datacenters or a large number of clusters. Thus, power management for MapReduce clusters has also 

become important  [119] [128]. Unfortunately, the innate features of conventional MapReduce programming 

model result in energy inefficiency. Examples of these features include  [119]: 

� Replicating data across multiple machines for fault tolerance, 

� Low-average utilization of machines in large datacenters, due to variable distributions of the jobs 

arrival have, 

� Sharing Map-Reduce clusters to run jobs with different behavior (some being CPU­intensive, and 

some IO­intensive), and 

� Speculative tasks execution performed by MapReduce to ensure reliability. 

Combining workloads on a fewer servers and powering down the idle servers is a common approach to 

enhance the energy efficiency. However, considering the characteristics of MapReduce, mentioned before, 

such techniques will not work so effectively because they:  [119] 

i. affect parallelism and MapReduce performance is proportional to the number of machines due to its 

parallel nature, 

ii. increase latencies because data would have to be fetched from remote locations, 

iii. cause data unavailability as data is distributed across servers, and 

iv. increase network traffic due to data replication done by NameNode  [122]. 

Therefore, effective energy management techniques should be aware of the underlying distributed file 

system and programming frameworks otherwise the application performance degrades significantly  [119].  

Most of the techniques that enhance the energy efficiency in MapReduce environments attempt to 

reduce the idle periods on nodes with a less number of active nodes in the cluster. To do so, they modify the 
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MapReduce programming model and DFS to effectively and intelligently 1) merge the jobs, 2) redistribute 

the data and 3) re-configure the nodes  [119]. Tiwari  [119] classifies the energy-efficient MapReduce 

techniques into two MapReduced-based and HDFS-based techniques. Then he categorizes the 

Map-Reduce programming model modifications for consolidating/distributing workload based on 1) 

workload characteristics, 2) hardware characteristics  [119]. Also, HDFS cluster modification techniques 

modify HDFS component work by consolidating the data on fewer active nodes so that other nodes can go 

to sleep state. According to  [119], HDFS cluster modification techniques are classified as 1) Replica-binning 

based data placement and zoning strategies and 2) Temporal-binning based data placement and zoning 

strategies. The former techniques ensure that at least one copy of every data block is always available. The 

latter techniques consider the data access patterns based on time and workload to create the zones so that 

frequently accessed data is always available. Wirtz  [128] proposes another classification for energy 

efficiency techniques for MapReduce including 1) Scheduling, 2) Powering-down nodes, 3) Analyzing how 

HDFS data is processed and 4) Analyzing system components to address energy conservation.  

Our proposed classification for energy efficient MapReduce techniques (shown in  Fig. 6) suggests 

dividing energy-efficient horizontal scaling techniques into two classes of homogeneous clusters versus 

heterogeneous clusters. Then each of these classes covers energy-efficient techniques for MapReduce 

programming model and scheduling, and for the DFS. Energy-efficient techniques proposed for 

homogenous clusters, mostly use scaling-down approach (i.e., transitioning servers to an inactive, low 

power consuming sleep/standby state) and scaling-up when needed. Alternatively, in a heterogeneous 

MapReduce cluster can consist of high- and low-power machines. Also, modern machines are equipped 

with DVFS capabilities. These features provide opportunities to save energy by intelligently placing jobs and 

data on its corresponding energy-efficient machines. 

4.1.1.1. Energy-Efficient MapReduce  
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In this section, we overview some of the energy-efficient MapRedeuce techniques for homogeneous 

and heterogeneous clusters. In homogeneous clusters all machines are assumed to be the same, however 

in the heterogeneous type, machines have different computing and consumption power.  

All-In Strategy (AIS)  [76] is a framework for energy management in MapReduce clusters by powering 

down all nodes in the cluster during a low utilization period. It powers down all nodes during low utilization 

periods, batches the jobs and powers on whole nodes, performs all jobs and again power down all when 

entire jobs are completed. Due to its batch characteristics, AIS may not support an instant execution. 

However, it decreases the response time of workload by running the workload on all the available nodes in 

the cluster  [76] [39] [77] [119]. The AIS is difficult to be applied when MapReduce data analysis is interactive 

since the cluster is never to be completely inactive  [39] [119]. A method to cope with the problem of energy 

reduction in the presence of interactive jobs is to avoid replication  [29]. This approach motivated by an 

empirical analysis of MapReduce interactive workload at Facebook. The analysis reveals that the interactive 

jobs operate on a small fraction of data; hence a small pool of machines (interactive zone) can be dedicated 

to these jobs. On the contrary, the less time-sensitive jobs can run on the rest of the cluster (batch zone) in a 

batch way. The interactive zone is always fully powered while the batch zone is powered down between 

batches. Consequently, energy saving comes from aggregating jobs in the batch zone.  

Unlike the techniques that try to save energy by scaling down the nodes, some other approaches 

choose to run all nodes in medium power state to avoid the peak power states of servers  [134]. This needs 

an energy-efficient job scheduling that can manage system workload so that few peaks observed in power 

consumption are removed. Further, a cluster can be dynamically reconfigured by scaling up and down the 

number of nodes based on the cluster utilization and current workload. The number of nodes is scaled up 

(down) in the cluster when the average cluster utilization rises above (falls below) a threshold specified by 

the cluster administrator. By doing this, the nodes in the cluster that are underutilized can be turned off to 

save power  [86]. 
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MapReduce efficiency may be varied depending on various factors in the system. Wirtz  [128] consider 

variation of MapReduce efficiency with respect to two kinds of runtime configurations: resource allocation 

that changes the number of available concurrent workers, and DVFS that adjusts the processor frequency 

based on the workloads' computational needs. An optimization technique allocates the optimal number of 

compute nodes to applications and dynamically schedules processor frequency during its execution based 

on data movement characteristics.  

Being aware of whether the system workloads are IO- or CPU-intensive a right strategy can be chosen 

for scheduling and mapping the tasks onto the server nodes. In a heterogeneous cluster, IO-bound 

workloads have better energy efficiency on low-power nodes while CPU-bound workloads achieve better 

energy efficiency on high-power nodes  [131]. Further, the Map task is more CPU-intensive while a Reduce 

task is more IO-intensive. This observation leads to an energy-aware node selection for a given task. In  [23] 

a spatio-temporal trade-off is introduced that includes the efficient spatial placement of tasks on nodes and 

temporal placement of nodes with tasks having similar runtimes. The objective is to maximize utilization 

throughout its uptime for a datacenter with heterogeneous VMs. Based on the following two principles (1) 

efficient spatial fit, and (2) balanced temporal fit, two VM placement algorithms are proposed. The former 

co-places various MapReduce VMs based on their complementary CPU, memory, storage and network 

requirements such that the available resources are fully utilized. The latter co-locates MapReduce VMs with 

similar runtimes so that a server runs at a high utilization rate. Once all collocated VMs have finished, the 

cloud operator can hibernate the server to conserve energy. Having various VM types differing in the 

amount of CPU, memory and storage capacity, each job is assigned a type of VM for its virtual cluster (from 

a set of predefined VM types). 

It is not surprising to know that more parallelism does not always results in more energy efficiency or 

speed-up, specifically when the job is I/O intensive  [120]. Network bandwidth is said to be a significant factor 

that affects the energy efficiency of the map-reduce jobs. Balancing CPU processing rate against I/O 
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processing rate considering the workload characteristics and network bandwidth can improve the energy 

efficiency of map-reduce jobs.  

DyScale  [130] is a Hadoop scheduler that takes into account the heterogeneous features of the cores 

for achieving better performance objectives with a specified power budget. It enables “slow” slots (running 

on slow cores) and “fast” slots (running on fast cores) in Hadoop. Within the same power budget, DyScale 

operating on heterogeneous multi-core processors provides significant performance improvement for small 

and interactive jobs comparing to using homogeneous processors with (many) slow cores. Moreover, 

DyScale maintains a good performance for large batch jobs compared to using a homogeneous fast core 

design (with fewer cores).  

4.1.1.2. Energy-Efficient DFS 

A solution for improving the energy efficiency of a distributed file system such as HDFS is to recast the 

data layout and task distribution of the file system to enable significant portions of a cluster to be powered 

down while still fully operational. Covering-Set (CS) approach exploits the replication feature of distributed 

file systems. In CS strategy some nodes in the system are specified as special nodes, called CS nodes. At 

least one copy of each unique data block is kept in these nodes. In this technique, during periods of low 

utilization, some or all of the non-CS nodes are powered down to save energy. The drawback of CS is that 

the workloads take longer to run when the cluster has been partially powered down, since fewer nodes are 

available to run the workload. It also requires code modifications in the underlying DFS 

software  [39] [77] [78].  

GreenHDFS  [73] divides the cluster into Hot and Cold zones. Data is placed initially in the zones based 

on high-level data classification policies and later transitioned from one to another based on its access 

frequencies. The Hot zone consists of files that are being accessed currently and the newly created files. It 

includes high-performance, high-power, and high-cost CPUs. All nodes in Hot zone remain in high-power 
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mode at all times. The majority of the servers in the cluster are assigned to Hot zone to ensure higher 

performance and higher data availability. The cold zone contains files with low to rare accesses. It utilizes 

machines with a higher number of disks to store a large amount of rarely accessed data. Aggressive power 

management policies are used in the cold zone to keep nodes in low, inactive power mode as long as 

possible. Nodes are powered-on only on demand  [73] [119]. 

4.1.2. Vertically Scaled Systems 

Big data analytics including data mining is per essence parallel regardless of the programming model. 

Some different architectural designs and programming models have been introduced to speed up the 

execution of applications and improve the energy efficiency with massive data sets. Such platforms range 

from multi-core clusters, hybrid clusters, clouds, mobile systems, GPUs, and FPGA systems. Also, a great 

attention is currently paid to substitute architectures for current server processors that will be discussed in 

the following sections. 

4.1.2.1. Energy-Efficient Processing on GPUs 

GPUs have been considered an excellent alternative to CPUs for high-performance and 

high-throughput computing applications. They can exploit data parallelism, increase computational 

efficiency, and save energy by orders of magnitude. An engine implemented in  [133] [53] [56] is a query 

co-processing engine on coupled CPU-GPU architecture (referred as Accelerated Processing Unit- APU) 

that can work as the base of in-memory database systems. This query co-pocessing engine can improve the 

query processing performance by leveraging the hardware advances with optimized algorithm design. A 

fine-grained method distributes workload among available processors since the CPU, and the GPU share 

the same main memory space. Moreover, an in-cache paradigm is employed for query processing to take 

advantage of shared cache hierarchy to overcome memory stalls of query processing.  
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The comparison results of discrete CPU-GPUs and coupled CPU-GPUs show that the average power 

consumption of discrete architecture is between 36% and 44% higher than those of coupled architecture. 

The results indicate that discrete GPUs always deliver higher performance at the expense of more energy 

consumption. The coupled architectures win mainly due to the specifically designed architecture of APU so 

that various complicated interconnections are eliminated. Thus, it is more energy-efficient for database 

workloads. 

4.1.2.2. Energy-Efficient FPGA-based Processing  

FPGAs can support very high rates of data throughput when high parallelism is exploited in circuits 

implemented in the reconfigurable fabric. FPGA reconfigurability offers a flexibility that makes them even 

superior to GPU for certain application domains. The key features of FPGA that can provide motivation for 

big data analytics are: parallelism and efficient power consumption (performance/watt). A vital feature of 

FPGA is its parallelism through a hierarchical style architecture that can be very much suitable for data 

processing applications. Many of the widely used and typical data operations can be implemented on FPGA 

through hardware programmability.  

IBM’s Netezza  [43], which falls under data warehouse appliance category, is a big data infrastructure 

platform using FPGA. The analytics appliance includes custom-built FPGA accelerators. Netezza minimizes 

data movement by using innovative hardware acceleration. It employs FPGA to filter out extraneous data as 

early in the data stream as possible, and as fast as data can be streamed off the disk. Huge benefits by 

introducing FPGAs in big data analytics hardware has been proved. Specifically saying, the queries are 

compiled using FPGAs to minimize overhead. Each FPGA on server blades contains embedded engines 

that perform filtering and transformation functions on the data stream. These engines are dynamically 

reconfigurable that enables them to be modified or extended through software. They are customized for 
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every snippet through instructions provided during query execution and act on the data stream at extremely 

high speeds.  

LINQits  [30] is a flexible and composable framework for accelerating data-intensive applications using 

specialized logic. LINQits accelerates a domain-specific query language called LINQ. It has been prototyped 

on a Xilinx Programmable SoC called the ZYNQ, which combines dual ARM A9 processors and FPGA. 

LINQits improves energy efficiency by 8.9 to 30.6 times and performance by 10.7 to 38.1 times compared to 

optimized and multithreaded C programs running on conventional ARM A9 processors. 

Academic researchers also showcased the vital development in building infrastructure for big data 

analytics. For example, BlueDBM or Blue Database Machine  [69] is a storage system for big data analytics 

that can dramatically speed up the time it takes to access information. In this system, each inbuilt flash 

device is connected to FPGA chip to create an individual node. FPGAs are used not only to control the flash 

device, but are also capable of performing processing operations on the data itself. 

4.1.2.3. How to Choose Right Hardware? 

A main challenge is to determine what type of hardware system is more suitable for which data type. It 

is quite essential for the processing infrastructure to be compute-intensive for running and processing such 

variety of data under time-bounded format. Most organizations with traditional data platforms such as 

enterprise data warehouses find that their existing infrastructure is either technically incapable or financially 

impractical for storing and analyzing big data. According to Intel  [67], the selection of key specifications for a 

given application can be specific to each domain and operations involved in each system. Some of the most 

notable characteristics to help in decision making during the early stages of development are: energy 

budget, bandwidth, data width, read/write speed, data process mechanism (e.g., batch and stream 

processing), network switching topology, traffic density, congestion control and security standards. All these 
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characteristics define four distinctive categories of system specifications for hardware infrastructure 

including compute, memory, storage, and network. 

GPU and FPGA are the possible accelerators that can achieve higher performance and energy 

efficiency than CPUs on certain jobs. GPU is power-efficient but only for SIMD (Single-Instruction 

Multiple-Data) streams, and the FPGA is hard to program. However, the data flow style architecture in 

FPGA may dominate CPU and GPU in providing high-performance memory-intensive operations at low 

power consumption (performance/watt) for a category of operations. The major overhead of GPUs and 

CPUs comes from executing instructions that rely on memory accesses. FPGA took the advantage of 

data-flow streaming, thus saving many of the memory accesses. The main drawback with FPGA is the 

programming complexity. Although, big data processing is performance-intensive, some applications 

specifically require reduced energy cost. According to  [53] and  [97], FPGA could be a viable solution on an 

energy-cost basis for very high performance, large scale applications compared to GPU and CPU. 

Although FPGA is a winner with respect to the power-efficiency, still GPU is outperforming its 

counterparts in terms of performance for some applications such as multimedia and communication 

algorithms from the HPC domain  [33] that often make extensive use of floating-point arithmetic operations. 

Due to the fact that complexity and expense of the floating-point hardware on a reconfigurable fabric such 

as FPGA are high, these algorithms are converted to fixed-point operations thus making FPGA less efficient 

than GPU for achieving higher speeds.  

It is worth mentioning that a combination of FPGA, GPU, and CPU hardware infrastructure is giving 

good results for the applications such as medical imaging  [90]. Even though it tends to be very expensive to 

develop such true heterogeneous infrastructure, the choice is purely based on the user requirement. 

Another significant requirement of heterogeneity is in signal processing domain that are in need of signal 

filtering and transformation, encoding/decoding, floating-point operations, etc.  
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4.2. New Server Architectures 

Recent research showes that the architectures of current servers do not comply well the computational 

requirements of big data processing applications. Therefore, it is required to look for a a new architecture for 

servers as a replacement for currently used machines for both performance and energy enhancement. 

Using low-power processors (micro-servers), more system level integration and a new architecture for 

server processors are some of the solutions that have been discussed recently as 

performance/energy-efficient replacement for current machines. 

4.2.1. Micro-Servers for Big Data Analytics 

Processing clusters based on low-power systems such as ARM processors are feasible, and this is an 

appropriate way to decrease power usage of several server applications. Prior research shows that the 

processors based on simple in-order cores are well suited for certain scale-out workloads  [81]. A 

comparison between x86 and ARM architectures for server applications  [8] concludes that ARM-based 

processors are three to four times more energy-efficient than the x86-based processors while comparing 

requests per second per Watt relation  [8] [111]. 

Several other studies have shown the efficiency of ARM micro-servers. One of these studies 

investigates the energy performance of server workloads on ARM Cortex-A9 multicore system through a 

trace-driven analytical model  [121]. The model involves the degrees of CPU core, memory and I/O resource 

overlap and estimates the optimal number of cores and clock frequency in favor of higher energy efficiency 

without compromising execution time. Using the collected metrics and a static power profile of the system, 

the execution time and energy usage of an application is predicted for a various number of cores and clock 

frequencies. Then, the configuration that maximizes performance without wasting energy is selected. It is 

predicted that the selected configurations increase energy efficiency by 10% without turning off cores and 

just through frequency scaling, and up to one-third with shutting down unutilized cores. For 
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memory-bounded programs, the limited memory bandwidth might increase both execution time and energy 

usage to the point where energy cost might be higher than on a typical x64 multicore system. The 

conclusion is that increasing memory and I/O bandwidth can improve the execution time and the energy 

usage of server workloads on ARM Cortex-A9 systems. Moreover, a 3000-node cluster simulation driven by 

a real-world trace from Facebook shows that on average a cluster comprising ARM-based microservers 

which support the Hadoop platform reach the same performance of standard servers while saving energy up 

to 31% at only 60% of the acquisition cost. 

Recently, ARM big.LITTLE boards (as small nodes) has been introduced as a platform for big data 

processing  [83]. In comparison with Intel Xeon server systems (as traditional big nodes), the I/O-intensive 

MapReduce workloads are more energy-efficient to run on Xeon nodes. In contrast, database query 

processing is always more energy-efficient on ARM servers, at the cost of slightly lower throughput. With 

minor software modifications, CPU-intensive MapReduce workloads are almost four times cheaper to 

execute on ARM servers. Unfortunately, small memory size, low memory and I/O bandwidths, and software 

immaturity ruins the lower-power advantages obtained by ARM servers. Efficient employment of ARM 

servers while coping with existing architectural constraints may be considered for further research and 

development. 

4.2.2. Novel Server Processors 

It has been shown that scale-out workloads have many characteristics that need to be known as a 

distinct workload class from desktop, parallel, and traditional server workloads  [42]. Due to the large 

mismatch between the demands of the scale-out workloads and today’s processor micro-architecture, 

scale-out processors have been recently introduced that can result in more area- and energy-efficient 

servers in future  [42] [54]  [84]. The building block of a scale-out processor is the pod. A pod is a complete 

server that runs its copy of the operating system. A pod acts as the tiling unit in a scale-out processor, and 
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multiple pods can be placed on a die. A Scale-out chip is a simple composition of one or more pods and a 

set of memory and I/O interfaces. Each pod couples a small last-level cache to a number of cores using a 

low-latency interconnect. Having a higher per-core performance and lower energy per operation leads to 

better energy efficiency in scale-out processors. Due to smaller caches and smaller communication 

distances, scale-out processors dissipate less energy in the memory hierarchy  [84]. 

FAWN architecture  [2] is another solution for building cluster systems for energy-efficient serving 

massive-scale I/O and data-intensive workloads. FAWN couples low-power and efficient embedded 

processors with flash storage to provide fast and energy efficient processing of random read-intensive 

workloads. 

4.2.3. System-Level Integration (Server-on-Chip) 

System-level integration is an alternative approach that has been proposed for improving the efficiency 

of the warehouse-scale datacenter server market. System-level integration discusses placing CPUs and 

components on the same die for servers, as done for embedded systems. Integration reduces the 1) 

latency: by placing cores and components closer to one another, 2) cost: by reducing parts in the bill of 

material, and 3) power: by decreasing the number of chip-to-chip pin-crossings. Initial results show a 

reduction of more than 23% of capital cost and 35% of power costs at 16 nm  [79]. 

5. Trends for the Big Data Analytics in Cloud-based Datacenters 

Despite great changes in the way data is accessed and managed, the datacenter has kept its 

server-centric model which is not adequate to keep up with new services, new energy requirements, and 

new business models  [31]. To accommodate big data analytics, the next generation cloud-based datacenter 

should comply with a new set of requirements. In the following, the challenges and opportunities in big data 

analytics are discussed for future research and development.  
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5.1. Energy Efficiency 

Measurements on current datacenters indicate significant wasted energy due to underutilization with 

average utilization values of about 30%  [125]. Today’s application environments are more distributed, often 

with multiple tiers, and oriented toward service delivery, eventually resulted in:  

� Greater traffic volume on the Ethernet network,  

� More storage traffic as applications use distributed file systems and increase the amount of 

synchronization and replication data across the network,  

� Greater traffic flow between peer nodes such as server-to-server or VM-to-VM  [34]. 

The massive number of processing units puts interconnection network systems under pressure to 

increase performance and accommodate better the communication among them  [96]. The higher level of 

network complexity and higher link bandwidth increase the energy consumed, and the heat emitted. The 

energy cost and the heat dissipation problems in interconnection networks necessitate future network 

systems be built with much more efficient power than today. Furthermore, computing with renewable energy 

is crucial in the future datacenters. There is a strong need for innovative technologies for improved energy 

capturing, and management of energy usage with energy storage and availability  [31].  

Table 2. Performance, Bandwidth requirements, and power consumption bound for future systems  [15] 

Year Peak Performance 

(10× every four years) 

Bandwidth requirements 

(20× every four years) 

Power consumption bound 

(2× every four years) 

2012 10 PFLOPS 1 PB/s 5 MW 

2016 100 PFLOPS 20 PB/s 10 MW 

2020 1000 PFLOPS 400 PB/s 20 MW 

 

 Table 2 shows the projection of performance, bandwidth and power consumption for future datacenters. 

As one can see, the peak performance and bandwidth requirements are highly demanding while the 
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affordable power consumption is in the much lower increasing rate. This reveals the great challenges in 

power consumption of future data centers and the opportunities for new research in this area. Recently, 

energy proportionality received some attention as a viable solution for power consumption in datacenters 

[49] though need deeper investigation to be utilized in next generation data centers. 

5.2. Interconnection Networks 

To support the big data analytics in datacenters, the high throughput/bandwidth interconnection 

networks with low latency and low power consumption is essential. This includes the data and storage area 

networks (e.g., SAN) as by increasing the size of the data the demand rises in storage systems as well. 

Depending on the kind of data management software in use and the kinds of data analyzed, big data can 

influence the size and frequency of data movements among servers and between servers and storage  [69]. 

Moving large objects (e.g., videos or high-resolution images) from long-term storage to analytical nodes will 

place a bigger burden on storage systems and data networks than moving myriad small text files  [1] [18]. 

Sizing network links, prioritization, traffic shaping, and data compression can be remedies  [18] [31]. Due to 

increasing rate of data-intensive applications requiring ubiquitous connectivity, 400G Ethernet will be 

required in datacenters/routers. Cost considerations is a main reason that copper wires are still favorable 

even for high-bandwidth networks  [94]. Moreover, using optical technologies is a viable solution that needs 

further research and investigation for future datacenter networks. 

5.3. Datacenters Architecture 

Distributing data-intensive applications across multiple datacenters seem to be a good solution for 

efficient big data management in the clouds. However, it should be supported by a reliable framework for 

managing large and distributed data sets and mobile databases stored on mobile devices over multiple 

datacenters while optimizing the network (e.g., latency and throughput) and cloud service QoS (e.g., cost, 
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response time, etc.)  [31] [34]. There is a need for following technologies to realize distributed applications 

over multiple datacenters: 

� Collaborative distributed datacenters that can support both location- and workload-dependent 

services and redundancy for failure recovery. The system architecture should be based on multiple 

datacenters, including scheduling, power management, and data/workload placement. 

� Innovative networking fabrics and distributed systems to extend services across multiple 

heterogeneous datacenters.  

� Optimal resource provisioning across multiple datacenters. Large-scale distributed data-intensive 

applications, e.g., environment monitoring applications, need to process and manage massive data 

sets across geographically distributed datacenters. These kinds of applications that combine multiple, 

independent, and geographically distributed software and hardware resources require provisioning 

across multiple datacenter resources.  

� Software frameworks and services that allow portability of distributed applications across multiple 

datacenters. Despite the existing technological advances of the data processing paradigms (e.g., 

MapReduce, and cloud computing platforms), large-scale, reliable system-level software for big data 

applications is yet to become commonplace. 

� Appropriate programming abstractions, which can extend the capability of existing data processing 

paradigms to multiple datacenters. 

Heterogeneity and Virtualization: The data and processing platform heterogeneity is inevitable in the 

future of the datacenters. The concept of data center remains the same as before, but the physical 

implementation will be different from the prior generations. The next-generation datacenter will be deployed 

on a heterogeneous infrastructure and architectures that integrate both traditional structured data and big 
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data into one scalable environment  [64]. New server and processor architectures appropriately matching 

with big data analytics requirements pose an indispensable trend for the micro-architects. Virtualization 

infrastructure is the key concept in data centers to support hardware and software heterogeneity and 

simplify the resource provisioning  [1]. Virtualization has a wide concept and has been studied for several 

years for data centers and cloud computing systems. The high-level language virtualization is the most 

relevant topic for big data analytics, which allow languages to be executed on multiple computing 

architectures. This needs to be done through compiler and runtime environment (e.g., JVM). The main 

challenge here is to consider the programmer’s productivity in future big data analytics software since it has 

a great impact on system cost. 

5.4. Resource Provisioning for Big Data Applications 

Processing of uncertain and heterogeneous data volumes requires optimal provisioning of cloud-based 

datacenters. The process of provisioning hardware and software resources to big data applications requires 

the resource provider to compute the best software and hardware configuration to ensure that QoS targets 

of applications are achieved, while maximizing energy efficiency and utilization. Schad et al.  [109] show that 

the QoS uncertainty of applications is the main technical obstacle to the successful adoption of cloud 

datacenters. 

The uncertainties of resource provisioning have two aspects. Firstly, from the perspective of big data 

applications, it is difficult to estimate its workload behavior in terms of data volume to be analyzed, data 

arrival rate, data types, data processing time distributions, I/O system behavior, number of users, and type 

of network connecting to the application. Secondly, from a resource perspective, without knowing the 

behaviors of big data applications, it is difficult to make decisions about the size of resources to be 

provisioned at a certain time. Furthermore, the availability, load, and throughput of datacenter resources can 

vary in unpredictable ways, due to failure, malicious attacks, or congestion of network links. In other words, 
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we need reasonable application workload and resource performance prediction models when making 

provisioning decisions  [34].  

One possible way to deal with uncertainties is to rely on monitoring the state of both hardware and 

software resources and taking predefined actions when some events occur. In  [129] the operating system 

level metrics such as available CPU percentage, available non-paged memory and TCP/IP performance are 

gathered for such purpose. A network QoS-aware provisioning of MapReduce framework for private cluster 

computing environments has been introduced in  [105]. However, this problem is more challenging and 

poses many open problems on the QoS-based predictive resource provisioning for multiple cloud 

datacenters  [38]. Therefore, there are several challenges in the resource provisioning that should be 

researched to provide QoS requirements of big data applications. 

6. Summary 

Highly virtualized cloud-based datacenters currently provide the main platform for big data analytics. As 

the scale of datacenters is increasingly expanding to accomodate big data needs, minimizing energy 

consumption and operational cost is a vital concern. The datacenters infrastructure including 

interconnection network, storage and servers should be able to handle big data applications in an 

energy-efficient way. The datacenter may be vertically scaled and equipped with more and faster hardware, 

processors, and memory to be able to handle large future workloads. Furthermore, horizontal scaling 

distributes the work across many servers which is an economical way to increases the performance 

compared with vertical scaling. Improving the utilization rate of servers and network resources, adjusting 

routing to the traffic flow, using optical interconnection networks, consolidating applications through 

virtualization in the cloud, optimizing network topologies established among VMs, efficient distribution of 

workload in the federated multi-cloud datacenters, and optimizing the power consumption of servers, 

processors, power supplies, and memory system are some of techniques for energy-efficient data analytics 
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in data centers. There are still many challenges and open problems as well as the need for improved or new 

technologies in the architecture and interconnection networks, resource provisioning, etc. 
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