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Abstract. The ambitious goal being pursued by researchers participat-
ing in the RoboCup challenge [8] is to develop a team of autonomous hu-
manoid robots that is capable of winning against a team of human soccer
players. An important step in this direction is to actively utilise human
coaching to improve the skills of robots at both tactical and strategic
levels. In this paper we explore the hypothesis that embedding a human
into a robot’s body and allowing the robot to learn tactical decisions by
imitating the human coach can be more efficient than programming the
robot explicitly. To enable this, we have developed a sophisticated HRI
system that allows a human to interact with, coach and control an Alde-
baran Nao robot through the use of a motion capture suit, portable com-
puting devices (iPhone and iPad), and a head mounted display (which
allows the human controller to experience the robot’s visual perceptions
of the world). This paper describes the HRI-Coaching system we have
developed, detailing the underlying technologies and lessons learned from
using it to control the robot. The system in its current stages shows high
potential for human-robot coaching, but requires further calibration and
development to allow a robot to learn by imitating the human coach.

1 Introduction

With autonomous robots becoming increasily prevalent in society, natural and
intuitive methods are required to interact, guide and improve robot behaviour.
Learning by demonstration, observation and imitation are approaches to learning
in which a teacher (or coach) provides examples of the desired robot behaviour.
Examples range from a teleoperated robot recording the actions performed by
the teacher, to autonomous robots learning to perform actions by watching a
human teacher perform a similar action [2]. Likewise, in the realm of virtual
agents, imitation learning has been used to teach autonomous agents in gaming
environments to perform complex manoeuvres performed by human experts [4].

In this paper we consider how to best teach humanoid robots to play soccer
in the RoboCup Standard Platform League (SPL). With people, when one per-
son coaches another, the objective of the coach is to use their relevant expert
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knowledge and experience to improve the task performance of the person being
coached. This knowledge transfer is often verbal, but can be aided by demon-
stration, pictures, videos, and other forms of communication. However, what is
the best way to coach an autonomous robot? In this paper we explore this issue,
and present a real-time Human-Robot Interactive Coaching System (HRICS).
Our long-term goal is to explore methods of teaching the robot (in real-time)
to extend and improve their capabilities without explicit programming. In this
paper we focus on one aspect of the system - the teaching of skills by demonstra-
tion (imitation learning). To this end, we describe how we use a motion capture
suit and portable computing devices (in particular the iPhone) to interact and
communicate with the robot.

The remainder of the paper is structured as follows. We begin in Section 2 by
describing our specific problem domain of robot soccer. In Section 3 we describe
our Human-Robot Interactive Coaching System (HRICS). Section 4 outlines
the implementation details of how we connected the motion capture suit to
the Aldebaran Nao humanoid robot. In Section 5 we present our initial results
and reflections regarding using the prototype system to coach soccer skills. We
conclude by discussing the potential of the new approach and future work.

2 Problem Domain: Standard Platform League (SPL)

Robot soccer matches in the SPL involve two teams of autonomous Aldebaran
Nao [1] robots competing on an indoor field for two 10-minute halves. Human
intervention is not allowed during the matches apart from picking up malfunc-
tioning robots or penalising robots that have violated the rules of the game.
The Nao robots need to make a wide range of skills autonomously. Perceptual
skills include colour recognition, object recognition and the detection of colli-
sions; motor skills include walking and kicking; and there are strategic decisions
to be made (for example, positioning on the field). An enormous effort prior
to competition is required for teams to develop and calibrate the software to
control such skills and behaviours. The prevailing approach for developing such
skills is for a software developer to script the behaviour coarsely, but provide a
parameterised interface for modifying the behaviour. Most of these parameters
will then be calibrated by hand (a very labour intensive process), while a smaller
proportion will be calibrated via an unsupervised learning process on the robot
[3]. A challenge facing the developers of autonomous robots is how to best spec-
ify, develop and improve the robot’s skill-set and decision-making capabilities
without tediously hand-crafting and hand-tuning behaviours.

3 Human-Robot Coaching System

Human-robot interactive coaching (HRIC) is a new way of approaching the prob-
lem of skill learning and development, and performance improvement. In this sec-
tion we provide a detailed description of our Human-Robot Interactive Coaching
System (HRICS) which has been implemented by integrating a combination of
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Fig. 1. a) System overview and b) System demonstration in the lab.

cutting edge technologies. Figure 1 a) outlines a schematic representation of var-
ious components in our system and their interactions; while Figure 1 b) shows
a snapshot of the actual system setup that is being tested in our lab.

The focal points of our architecture are the autonomous Nao robot, portable
computing devices (iPhone/iPad), a full-body motion capture suit, and data
logging for offline processing. The robot is the central part of our architecture it
is capable of fully autonomous action, but its autonomy can be restricted by the
human coach via the Iphone/Ipad interface. All the data from the robot as well
as the user input to the mobile device is stored on the main computer, which
processes the data and ensures robot’s learning from this data. The perception
of the robot is streamed to the mobile device, where it can be annotated for
better recognition. The mobile device can also act as a tool for synchronising
the perception of the robot and a human coach, which is particularly useful in
the imitation mode, where the robot can learn ball searching behaviour, various
strategies of approaching the ball or different kicking styles depending on the
environment state. While all of the aforementioned components are present in
the system and are fully embedded, the main focus of this paper is on integrating
its novel element - the full-body motion capture suit. The motion capture suit
presents an innovative way of human-robot interaction, where each body part
of the human user is involved into controlling the corresponding body part of
the robot. The data from the motion capture suit is obtained in real time and
is also streamed via WiFi to the main computer, which calculates the necessary
transformations to map this data to a robot’s motor angles. The technological
details of streaming robot vision to a mobile device or collecting robot’s sensory
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data and using supervised machine learning on it [9] are outside of this paper’s
scope. Next we consider each of the aforementioned system components in detail.

3.1 Aldebaran Nao

The Aldebaran Nao is a humanoid robot with 21 degrees of freedom. The Nao
robots are equipped with sensors such as head mounted colour camera, front-
facing ultrasonic distance sensors, force sensors in the soles of the feet, bump
detectors on the toes of each feet, accelerometers, and gyroscopes.

3.2 iPhone/iPad

We have developed an iPhone/iPad application for interacting with the robot.
The application allows the user to interrogate the robot’s internal state, stream
raw and processed vision in real-time (see Fig. 2), and set operation modes of
the robot. The main interface of the application consists of a camera view and
a soccer field view which displays raw or processed live images streamed from
the robot and the position on the field where the robot believes to be located
(Fig. 3). Properly configured robots automatically establish a connection with
the portable computer device once they are turned on. An arrowed dot icon is
displayed in the soccer field view on the console for every connected robot. The
dots on the soccer field correspond to the estimated positions of the robots on
the actual field (see Fig. 3).

Fig. 2. Raw and processed live images from the robot’s camera displayed on an iPhone.

For our current experiments (described in the later sections), we provide
the human coach live-feeds of raw vision from the robot’s camera. Live images
captured from the robot camera are transmitted to an iPhone every 200 ms.

3.3 The Motion Capture Suit

As an interface to control and coach the robot we employ a high precision full-
body motion capture suit, Xsens MVN3. Only recently motion capture suits

3 http://xsens.com/en/general/mvn



Real-Time Human-Robot Interactive Coaching System 5

Fig. 3. The main graphical interface of the iPad interactive coaching application.

similar to Xsens MVN reached the level of precision when they can correctly
capture real-time motion of a human body with no significant data errors. This
equipment comes in a form of a lycra suit with 17 embedded motion sensors.

The suit is supplied with MVN Studio software that processes raw sensor
data and corrects it. It also uses inverse kinematics to cross-verify the data and
to estimate the parameters of additional body joints. As the result, MVN studio
is capable of sending real-time motion capture data of 23 body segments using
the UDP protocol with the frequency of up to 120 motion frames per second.
The key elements of the data being transmitted are absolute (X,Y,Z) position
of each segment and its absolute (X,Y,Z) rotation. XSENS MVN is capable of
real-time motion capture with very high accuracy. During extensive testing it
showed a very small margin of error (0.8◦, s = 0.6◦ for each of the sensors) [10].

3.4 Data Logging

Commands from the motion capture suit are translated to robot effector com-
mands (the details of this translation are described in Section 4) and sent to the
robot. We programmed our robots to log all effector commands, sensor data,
and other internal state variables every 10ms4. Data is recorded regardless of
whether the robot is operating autonomously or being teleoperated via the mo-
tion capture suit. If the robot is being controlled via the motion capture suit,
this state information is recorded, as are the walk engine commands (forwards,
strafe, and rotation) and head position (pitch and yaw) commands chosen by the
human controller. This data enables us to analyse (off-line) the decisions made
by the human coach in relation to the robot’s perceptual state.

4 On each DCM callback event.
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4 Connecting XSENS MVN to a Nao Robot

In our system we directly map each body segment of the human user to the
corresponding motor of the robot and adjust those accordingly. The data being
transmitted by the suit is measured using the absolute coordinate system of the
suit space, where the X axis is aligned with the magnetic north and the origin
corresponds to the position at which the suit was turned on. All the rotation
data that is being transmitted by the suit comes in the form of quaternions [6].

The robot has a completely different embodiment to a human, so for con-
trolling the robot with a motion capture suit we had to make a number of
adjustments. In order to control the movement of its body parts, rather than
setting positions and rotations, the robot uses a number of embedded motors,
setting the degree of rotation for each of these motors results in the desired
movement. To control these motors an SDK allows the programmer to specify
the angular rotational position of each motor every 10ms.

When using the motion capture suit for controlling the robot, some of the va-
lues we receive for body segments can be directly translated into the appropriate
motor rotations on the robot side. For example, there are two motors controlling
the head of the robot: pitch motor (headPitch) - responsible for up/down head
movement and yaw motor (headYaw) - responsible for side movements. The
range of these motors is a bit wider than the corresponding range of the human
head motion, but within the range of acceptable human head movement - the
angles one must supply to the motors directly map to the Euler angles of the
human’s head segment.

Fig. 4 provides a graphical explanation for how the data obtained from the
motion capture suit is being utilised for controlling the head movement of the
robot, its body orientation, as well as forward/backwards/sideways movement
of the robot’s body. The 3D character shown on the left hand side of the figure
corresponds to a reconstructed human model based on the positions and rota-
tions of the body segments received from the motion capture suit. This figure is
positioned in the global suit coordinate system, where all coordinates are mea-
sured in meters. All the data we receive is in absolute coordinates and angles in
relation to this coordinate system.

In order to convert the suit data into the appropriate values for the motor
rotations on the robot end, we have to apply the following transformations.
First, we must convert the absolute rotation of the head segment into a relative
rotation, as the robot operates with angles in the robot space. To do this we
have to calculate the relative rotation of the head sensor in relation to the chest
segment. The following equation helps to make this translation.

Qrotrelative(a, b) =
Qrotb
Qrota

(1)

Here Qrotrelative(a, b) corresponds to the resulting relative rotation (in the
quaternion form) of the head sensor (a) in relation to the chest segment (b).
The values of Qrota and Qrotb represent the quaternions defining the absolute
rotations of each corresponding body segment.
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Fig. 4. Translating the MoCap Suit Data into the Robot Motor Angles.

The resulting quaternion rotation (that is shown as headRot in the picture)
can be represented as a matrix of the following form:

Qrotrelative(a, b) = [q0, q1, q2, q3]
T

(2)

Once the relative rotation is obtained, we have to transform the quaternion
rotation into Euler angles and translate those into correct values for each robot
motor. To obtain Euler angles from this matrix - we use the following equation:∣∣∣∣∣∣

rotX
rotY
rotZ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
atan2(2(q0q1 + q2q3), 1− 2(q21 + q22))

arcsin(2(q0q2 − q3q1))
atan2(2(q0q3 + q1q2), 1− 2(q22 + q23)))

∣∣∣∣∣∣
Here rotX represents Euler rotation around the X axis, rotY is the Euler

rotation around the Y axis and rotZ corresponds to the Euler rotation around
the Z axis. In the case of the head, the yaw motor angle (headYaw) is obtained
from rotZ and the pitch (headPitch) - from rotX .

Controlling the walking movement of the robot is a bit more complicated than
rotating the head or arms. The robot has a completely different joint structure
to a human in its legs and a significant difference in its centre of gravity. Direct
mapping of human joint rotations onto robot motor angles is a difficult task
known in the literature as motion retargeting [7]. To avoid obvious mismatches
and prevent the robot from falling over we decided not to move every leg sensor
individually, but to play prerecorded standard walking moves of the robot in
response to the corresponding move being detected as performed by a human.
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The robots’s SDK provides a function for this purpose, which receives the for-
ward/backward velocity (Vfwd), body rotation (bodyRot) and the side velocity
(Vside) and results in the desired movement of the robot.

In order to calculate the forward velocity of the robot we first have to compute
the forward transformation of the human coach in the direction of the current
body orientation. Lets assume that posstart - is the absolute position of the
human wearing the motion capture suit in the beginning of forward/backward
movement and posend is the position in the end of this movement.

To obtain the position displacement in the direction of the current body
orientation of the human we have to rotate the coordinate system by the angle
α, which represents the body rotation of the human (in our case α = rotZ). In
order to perform the coordinate rotation we use the following rotation matrix:

<(α) =

∣∣∣∣ cos(α) − sin(α)
sin(α) cos(α)

∣∣∣∣
So, after rotating the coordinates using our rotation matrix, the new coordi-

nates (Xstart′, Ystart′) for the point posstart will be:

Xstart′ = posstart.X ∗ cos(α) + posstart.Y ∗ sin(α)
Ystart′ = −posstart.X ∗ sin(α) + posstart.Y ∗ cos(α)

And the new coordinates (Xend′, Yend′) for the point posend will be:

Xend′ = posend.X ∗ cos(α) + posend.Y ∗ sin(α)
Yend′ = −posend.X ∗ sin(α) + posend.Y ∗ cos(α)

Now we can calculate the forward/backward displacement of the human be-
tween those two positions as:

4Fwd = Xend′ −Xstart′ (3)

And the sideways displacement of the robot can be obtained as:

4Strafe = Yend′ − Ystart′ (4)

The displacements 4Fwd and 4Strafe represent the distances the human
body has travelled between two sensor data readings. The data transmission
frequency of the suit is manually adjustable and known in advance. Thus to
obtain the forward velocity we can use the following equation:

Vfwd =
4Fwd
t

(5)

And the sideways velocity is obtained as:

Vside =
4Strafe

t
(6)

In both equations t represents the standard delay between two subsequent
suit data transmissions (currently set at 10 ms).
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Finally, to make the robot rotate at a desired angle we have to set the value
of the corresponding motor. When changing its rotation the robot only deals
with relative angles, so it doesn’t make any assumptions about its global po-
sition and orientation in the world. Similar to obtaining the relative displace-
ments of the sensors we described above, we must compute the change of robot’s
body rotation in-between two consecutive data measurements of the motion
capture suit. To do so, we use the equation (1) and apply it to two measure-
ments of rotations of the chest sensor, so that we obtain the relative rotation
(rotChange = Qrotrelative(X

′, chestOrientationEnd)) between the chest orien-
tation vector in the first measurement and the chest orientation vector in the
last measurement. The bodyRot angle that we send to the robot corresponds to
the Z Euler angle of the rotChange variable in the suit space (see Fig. 4). Given
that q0, .., q2 are the dimensions of the rotChange quaternion - we can use the
equation (2) to calculate the final argument of our function as:

bodyRot = atan2(2(q0q3 + q1q2), 1− 2(q22 + q23))) (7)

The proportions of the human body and other embodiment characteristics
are very different to those of the robot, so no direct mapping can be made
between the motion capture data and the data required by the robot. Thus,
we had to conduct a series of experiments for obtaining the scaling factors that
apply to each of the robot motors.

5 Experimental Evaluation

In order to test the validity of our assumption about the usefulness of the re-
sulting coaching system we conducted a series of experiments where each of the
system components was extensively tested5.

We had a four step plan for evaluating the HRICS. Our first step was calibra-
tion of human movements to robot movements via scaling, clipping and the use
of minimum movement thresholds. For example, the human controller should not
need to run for the robot to walk at top speed; nor should the human fidgeting
or other unintentional small movements result in a tiny step from the robot. We
calibrated each dimension of the walk engine separately (rotation, strafe and for-
wards/backwards). Best results were found when small human movements were
scaled to larger (proportionally speaking) movements on the robot. For exam-
ple, for the robot to walk forwards at full speed the human controller was only
required to make a small step forward. To remove unintentional human move-
ments from controlling the robot, the human controller was required to stand
relatively still. If the robot still moved (due to highly accurate nature of the
motion capture suit, even breathing can trigger non-zero values), the minimum
value threshold was increased. Head movements were also scaled and offset. As
we were using the downwards facing camera of the Nao’s two cameras, after

5 The video recording featuring fragments our experimental evaluation can be seen at:
http://www.youtube.com/watch?v=XY4nYpEZr5U
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head calibration the robot’s “eyes” (they are LEDs very display purposes only)
would be facing slightly higher than the human’s. After conducting extensive
testing we came up with the following adjustments for the robot (see Fig. 4).
The bodyRot variable had to be magnified by 20. Both Vfwd and Vside require a
magnification by 40. The headY aw didn’t require any adjustments, as limiting
the range of the robot’s head to the range of the human didn’t seem to have a
significant visual impact. Finally, the headPitch had to be magnified by 1.5 and
the values beyond the allowed robot’s range had to be clipped.

Next, once the suit was calibrated we attempted to play soccer using the
human’s vision (“super perception”). This involved the human controller walking
about the field, with the robot imitating the human’s actions6. Scoring a goal was
not a simple or straightforward task for the robot. Network lag and the nature
of the Aldebaran walk engine meant that the robot would imitate a human
step direction approximately 1 second after they executed it. The key reason
for this delay was the fact that with our currently chosen approach the robot
was not able to interrupt its walk half way through the step cycle, but was only
able to change the walking direction after the step cycle was finished. Also, our
scaling of human movement to robot movement (despite calibration emphasising
that small human movements should be converted to large robot movements),
meant the human controller was constantly running out of room to move within
the 6m by 4m soccer field. Even more difficult was when the human controller
would end up in front of the robot and the ball, and thus they had to somehow
move themselves behind the robot, but without the robot moving. Despite these
difficulties, the human was able to control the robot in a fluent manner after
adjusting his behaviour by moving using smaller steps, and reducing the overall
movement velocity so that the robot is able to catch up with him.

After experimenting playing soccer with the human’s vision, we head-mounted
an iPhone feed of the robot’s raw camera feed to the human controller7. This al-
lowed the human controller to play soccer in a remote location to the robot, but
increased the level of difficulty in playing soccer with the robot, mainly due the
small field of view provided by the robot’s camera. Having no possibility to see
the robot made it difficult to adjust the walking behaviour of the experimenter.
As the result, it was often required to perform an additional search for the ball as
the experimenter’s mental representation of the ball and robot’s position on the
soccer field didn’t match the actual positions. Having the vision, though made
it possible to quickly detect reference points and update the mental model.

Lastly, we had planned to try and teach the robot skills by logging human
command data, together with robot perceptual data, while controlling the robot
suit. However, with our current level of fine control requiring more calibration,
an autonomous robot soccer player is a more effective goal-scorer than a robot
controlled by the motion-capture suit. However, we are optimistic that with
further calibration and refinement, there is a great deal of potential with this

6 This was somewhat confronting visually, as the robot’s head would not be looking at
the ball. Instead it would be looking in the same direction as the human controller.

7 In the future, we plan to purchase and use wearable video glasses.
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approach. A variety of machine learning algorithms operating on robot sensory
data are already embedded into our infrastructure [9], so when we reach the
desired level of control precision this part of the experiment will be resumed.

6 Discussion

The development of our Human-Robot Interactive Coaching system is inspired
by the real-life human soccer coaching and game plays. It is rooted in the view
that robot soccer should adopt successful approaches that have been traditionally
applied in the human soccer. Programming every facet of the robot behaviour is
time-consuming, inflexible, error-prone and limited. It is crucial to understand
that our coaching system does not drive the robot’s actions directly as an OCU [5]
in a soccer game; it is not purely used for remote control but aims to help
the robot learn new skills and strategies. The coaching system monitors the
autonomous robot’s performance in real-time and gives helping instructions to
the robots to improve their game playing skills. Our system is used only in robot
training and practice matches, and not in real soccer competitions.

The motion capture suit provides the robots with the possibility to learn
rich motion dynamics from the human. These capabilities are difficult to imple-
ment using the standard computing hardware. Prior to using the motion capture
suit we conducted experiments with remotely controlling a team of robots via
keyboard input, but it was too difficult to work with so many parameters simul-
taneously and was hard to achieve the desired level of precision in setting each
of the parameters. Correctly updating the value for each of the 21 motors of the
robot by pressing the corresponding keyboard button was a difficult task and
remembering the keys that correspond to each of those joints was even more
challenging. As the result, the autonomous robots prevailed in our experiments
and the human participants reported on the high degree of frustration and con-
fusion with controls. In contrast, the use of motion capture suit allowed for a
much better and intuitive interface than a keyboard. In particular, control of
the robot’s head was fluent and natural (as motor commands for the Nao’s head
were updated very 100ms, as opposed to control of the legs which was updated
on every step-cylce). Due to the number of problems we discussed above it was
still not feasible to successfully compete against autonomous robots, but the
potential of this interface is very high.

The approach we applied for mimicking human’s head rotation was success-
fully tested on moving the arms of the robot. This functionality, however, had
to be disabled to make it possible for the user to utilise his hands for interacting
with the mobile device rather than for controlling robot’s hand movement.

7 Conclusions and Future Work

We presented the progress made in developing a innovative real-time Human-
Robot Interactive Coaching system based on an iPhone/iPad interactive coach-
ing console and Xsens MVN full-body motion capture suit for the autonomous
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robot Nao’s motion and behaviour learning. We have shown that our interactive
coaching system is a promising solution to effectively improve the performance
of Nao robots in autonomous soccer game play through real-time exchange of
rich information between the robots in training and the human coach.

The future work will include further fine-tuning of the human-robot motion
correspondence, with the aim of allowing a human controller to become an expert
coach via teleoperation. We are planning to utilise machine learning to come up
with a mapping function that would create correspondences between motion
snapshots recorded by the MoCap suit and the resulting posture of the robot.
Once this function is in place, it will be possible to design our own walk engine
and avoid the lag problems that we discussed earlier. We will also conduct a
series of experiments on teaching various tactical and strategical behaviours
to the robot from imitating the human user. In particular, we will focus on
learning how to map an existing mental model about the state of the world
and sensory perception of the robot to an efficient ball searching strategy by
learning it directly from a human. Also we will explore using imitation learning
for training the robot various kicking styles and selecting an appropriate kicking
style depending on the state of the environment.
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