
Bandwidth Modeling in Large Distributed Systems
for Big Data Applications

Bahman Javadi
School of Computing, Engineering and Mathematics

University of Western Sydney, Australia
Email: b.javadi@uws.edu.au

Boyu Zhang, Michela Taufer
Dept. of Computer and Information Sciences

University of Delaware, USA
Email: {bzhang, taufer}@udel.edu

Abstract—The emergence of Big Data applications provides
new challenges in data management such as processing and
movement of masses of data. Volunteer computing has proven
itself as a distributed paradigm that can fully support Big Data
generation. This paradigm uses a large number of heterogeneous
and unreliable Internet-connected hosts to provide Peta-scale
computing power for scientific projects. With the increase in
data size and number of devices that can potentially join a
volunteer computing project, the host bandwidth can become
a main hindrance to the analysis of the data generated by
these projects, especially if the analysis is a concurrent approach
based on either in-situ or in-transit processing. In this paper,
we propose a bandwidth model for volunteer computing projects
based on the real trace data taken from the Docking@home
project with more than 280,000 hosts over a 5-year period.
We validate the proposed statistical model using model-based
and simulation-based techniques. Our modeling provides us with
valuable insights on the concurrent integration of data generation
with in-situ and in-transit analysis in the volunteer computing
paradigm.

Keywords-Volunteer Computing, Big Data, Internet Band-
width, Statistical Modeling.

I. INTRODUCTION

Volunteer computing (VC) is a large-scale distributed
paradigm that harnesses the computing power and storage
capacity of thousands or millions of hosts owned by the
public for scientific applications. Volunteer computing has
proven itself as a paradigm that can fully support Big Data
generation [7], [13]. For example, to date, the Docking@Home
project has generated 1.8 TBytes of data.

While important aspects of this paradigm, such as comput-
ing power and storage capability, have been critically analyzed
in the past [2], [9], other aspects, such as the host bandwidth
has not been addressed yet. The modeling and analysis of
the bandwidth is becoming particularly relevant for volunteer
computing projects as several middleware packages for in-
situ and in-transit analysis are emerging [4], [8], and the
number of computing devices that can potentially join the
projects is increasing. Ideally, as the volunteers’ hosts generate
larger and larger amounts of scientific data, these middleware
packages can concurrently process the data and extract their
scientific meaning either locally by using a reduced part
of the volunteered resources on the hosts (in-situ analysis)
or in the transient stage between the hosts and the server
(in-transit analysis). Both in-situ and in-transit analysis can

potentially improve the science that volunteers’ hosts perform.
In both cases, the data ultimately received by the project
server is a reduced, processed amount that summaries the
scientific directions of the simulations. When receiving this
new knowledge rather than the raw data, the server is provided
with run-time insights in the simulation’s convergence toward
meaningful results, allowing the scientists to stop or steer
those simulations whose patterns explore solutions that violate
scientific laws. At the same time, the increasing amount of
computing devices available on the market (e.g., smart phones
and tablets) can potentially join volunteer computing projects;
this large number of hosts can eventually result in a large
number of data communication between the hosts and their
server to the point that the server becomes the bottleneck.

In this paper, we claim the urgent need for studying data
communication between the hosts and a server in volunteer
computing projects. We address this need by proposing the
modeling and analysis of the network bandwidth between the
hosts and the server for an established volunteer computing
project, the Docking@Home project. Specifically, to answer
the question whether the network is able to support the
requirements for in-situ and in-transit analysis as new devices
join the project, we define a statistical model to predict the
metric of interest (i.e., the host bandwidth). Once validated,
our model can provide us with insightful information to study
different simulation scenarios for the volunteer computing
project. While the dataset used for the modeling, validation,
and analysis are specific for the Docking@Home project, the
overall methodology can be easily applied to other distributed
computing systems. The key contributions of this paper are:

• We propose a general methodology to model the network
bandwidth of a volunteer computing project.

• We apply the methodology to model and predict the
bandwidth between the hosts and the server of a volunteer
computing project with more than 280,000 hosts over a
5-year period.

• We validate the accuracy of the proposed model and
its predictions by using different methods under realistic
working conditions.

The rest of this paper is organized as follows: Sec-
tion II defines the data collection and modeling methodol-
ogy; Section III describes the bandwidth modeling for Dock-



ing@Home; Section IV discusses the model validation; and
Section V concludes the paper by summarizing the results and
introducing future work.

II. MODELING METHODOLOGY

Our proposed statistical model predicts the network band-
width for a specific time and takes into account both download
and upload bandwidth. In the following, we discuss the
real dataset of the traces and the methodology used for the
modeling.

A. Trace Characterization

To extract the trace used for our modeling, we sample
the real bandwidth from the Docking@Home project. The
Docking@Home project simulates the behavior of ligands
when docking into the active site of a protein. This project
utilizes the BOINC software [1] to harness the computing
power and storage capacity of hosts owned by the general
public.

The Docking@Home trace covers the data of more than
280,000 hosts connected to the Internet between September
11, 2006 and May 5, 2014 [6]. This trace is publicly available
in the Failure Trace Archive (http://fta.scem.uws.edu.au/) [10].
New entry in the trace is added every time a host contacts the
server (i.e., the BOINC server); data includes host resource
measurements such as processor speed, memory size, disk size,
as well as download and upload bandwidth. In order to clean
the data from possible recording noise and transmission error,
we exclude hosts with download/upload bandwidth less than
zero or more than 103 Gbps. Therefore, we removed about
16% of total hosts from the dataset.

Fig. 1. Distribution of host lifetime of Docking@Home over an interval of
time ranging from September 11, 2006 to April 1, 2014.

To make sure that the trace is sufficiently long for the
modeling, we exported the host lifetime. We define the lifetime
of a host as the time between the first and last connection to the
server. The distribution of the host lifetime in Docking@Home
is plotted in Fig. 1. The average lifetime is about 103 days that
is slightly less than other volunteer computing projects but still
sufficient for our purpose of modeling the host bandwidth [9].
Note that for this figure we exclude the hosts which connected

to the server after April 1,2014 to avoid the impact of short
lifetime.

Fig. 2. Bandwidth usage of the Docking@Home server at the University of
Delaware.

Since we are modeling the host bandwidth, we must make
sure that the project server is not a bottleneck. As a matter
of fact, it has been shown that server bandwidth could be
a system bottleneck when server cannot handle the traffic
generated/requested by volunteer computing hosts [3]. Thus
we analyze the bandwidth usage of the server at the University
of Delaware for the duration of the project. Since the beginning
of 2009, the server has been connected to an 1Gbps network
connection; Fig. 2 shows that only 10% of this bandwidth is
used. Under these conditions, we can be confident that the
project server is not saturated and the host bandwidth can
reflect the real bandwidth of volunteer computing hosts.

B. Host Analysis

The host bandwidth is a relevant metric of an active host.
An active host at time T is a host that had connected to the
server before time T and whose last connection to the same
server takes place after time T [9]. It is worth noting that the
host activity, meant as the time a host is active, is different
from the host availability; the latter was investigated in detail
in previous research and refers to the time a host is exclusively
dedicated to the execution of the scientific simulations [11].

Fig. 3 shows the number of active hosts in Docking@Home
for the duration of four years (i.e., from January 1, 2009 to
December 31, 2012). As it can be seen in the figure, there are
on average more than 10,000 active hosts in this period; thus
this period is sufficiently populated by active hosts to be used
for the modeling. The project did not have lots of active hosts
before 2009 as it was in an early stage of recruitment. Note
that we use data collected during the Year 2013 for the model
validation, which therefore is not included in the interval of
time used for building the model.

In order to identify the trend of host bandwidth over time,
we plot the average download and upload rates of active hosts
from 2009 to 2012 in Fig. 4. The mean download bandwidth
is about 30 times more than the mean upload bandwidth for
each year. This observation indicates the demand for a higher



Fig. 3. Distribution of active hosts in Docking@Home from 2009 to 2012.

(a) Download (b) Upload

Fig. 4. Average download and upload bandwidth for active hosts in Dock-
ing@Home.

download rate by the Internet users. As plotted in Fig. 4, the
average download bandwidth increases about 20% per year
while the upload bandwidth increases about 15% per year.
This increase in the mean values is less than we expected based
on Nielsen’s Law; Nielsen stated that the network connection
speed for high-end home users increases 50% per year. One
possible answer for this behavior is the shorter lifetime or the
lack of contribution from hosts with a better bandwidth in the
volunteer projects.

To complete the bandwidth analysis over time, we also plot
the boxplot of the average bandwidth for active hosts in Fig. 5
in which the three 25%, 50% and 75% quartiles are illustrated.
The figure outlines how the interquartile range (IQR) for the
upload bandwidth is smaller than the download bandwidth.
This reveals that the spread of the distribution for download is
larger than the upload and should be considered to candidate
the statistical models. Moreover, we can observe an increasing
of the variance for the hosts bandwidth over time for both
download and upload rate. Note that the upload bandwidth has
more outliers in the data and this may result in an hindrance
to find a good model.

III. BANDWIDTH MODELING

A. Host Bandwidth Correlations

The first step towards discovering the best model for the
host bandwidth is finding possible correlations (e.g., between
upload and download bandwidth, and between host bandwidth

TABLE I
P-VALUE RESULTS FROM GOF TESTS FOR THE 2012 DATASET (AD, KS).

Model Download Upload
Exponential 0.026 0.003 0.403 0.255
Gamma 0.179 0.077 0.492 0.378
Log-normal 0.548 0.391 0.608 0.477
Weibull 0.323 0.188 0.442 0.311

and the host time zone). We examined the correlation between
upload and download bandwidth using the Pearson correlation
coefficient and we found out that there is no clear correlation.
This can be justified by the fact that most Internet users tend to
subscribe to Internet service providers based on the download
rate as they do not care much about the upload rate.

We also checked the possible correlation between the host
bandwidth and the host time zone. The results of this analysis
is plotted in Fig. 6 where the download and upload bandwidth
for the six largest timezones in the project are illustrated.
The x-axis in these figures shows the offset from the GMT.
As one can see, there is no strong correlation between the
timezone and the host bandwidth. However, we can observe
that hosts in Eastern North America (-4,-5) have slightly higher
download and upload bandwidth, which might be because of
the proximity to the project server.

The absence of obvious correlations in the host bandwidth
drives our modeling approach towards the design of an in-
dependent statistical model that predicts the download and
upload rate for a given host and at a specific time.

B. Statistical Modeling

To design the statistical model, we first examine the distri-
butions of host bandwidth for different time periods. Fig. 7
shows the mass-count disparity of the host bandwidth in 2010
and 2012. From these figures we can clearly observe that about
10% of total bandwidth is created by 90% of low bandwidth
hosts. Thus, the 10% of high bandwidth hosts contributed for
the rest of 90% of total bandwidth. This information reveals
the long-tail behavior of the host bandwidth and suggests to
us the need to focus on modeling of higher bandwidths by
using a statistical model that exhibits this behavior.

In our search for the suitable model, we considered various
statistical models (i.e., Weibull, Log-normal, Gamma and Ex-
ponential) which can be a good fit for this type of behavior. For
all these distributions, we conducted parameter fitting using
maximum likelihood estimation. We measured the goodness
of fit (GoF) of the resulting distributions using probability-
probability plots and two quantitative methods, i.e., KS-test
and AD-test [11]. Due to space limitation, we do not show
the full results of these tests and only present the GoF results
in form of p-value for the 2012 dataset in Table I. A model
with a higher p-value is the better fit for the dataset. The results
show that we can model the hosts bandwidth (both download
and upload) using the Log-normal distribution for each year
with a high level of accuracy.

Since we are looking for a model to predict the host
bandwidth over time, we need to integrate the time parameter



(a) Download (b) Upload

Fig. 5. Download and upload bandwidth for active hosts from 2009 to 2012.

(a) Download (b) Upload

Fig. 6. Download and upload bandwidth for active hosts in different timezones from 2009 to 2012.

(a) Download 2010 (b) Upload 2010 (c) Download 2012 (d) Upload 2012

Fig. 7. Mass-count of download and upload bandwidth for active hosts in 2010 and 2012.

as well. To this end, we need to determine the required param-
eters by Log-normal distribution as the best fit model. Log-
normal has two parameters: the mean µ and standard deviation
σ of the variable whose logarithm is normally distributed.
Thus, we need to find the mean and standard deviation of
the logarithm of the host bandwidth over time. We extract the
mean and variance (σ2) of the logarithm download and upload
rates of active hosts for each month from 2009 to 2012. We fit
the data with different exponential and polynomial functions
and find the following exponential function as a closet fit for
these values:

f(t) = aebt (1)

where a and b are the parameters to be fitted for each
metric and t is the time variable. We define the time as
t = date − Rdate, where date is the given date per year
and month and Rdate is the reference date, which is the
start date of the modeling trace (i.e., January 2009). We fit
this function separately for the mean and variance of host
download and upload bandwidth. The results of fittings are
depicted in Fig. 8 and Fig. 9 for the download and upload
bandwidth, respectively. As one can see in these figures, the
proposed exponential function is a good model to predict
the mean and variance of the host bandwidth, except for the
variance of the upload bandwidth. The parameters for the



TABLE II
PARAMETERS FOR THE FITTED EXPONENTIAL MODEL.

Model a b R2

Mean download 5.698 0.493e−3 0.9748
Variance download 590.7 0.729e−3 0.9227
Mean upload 0.1955 0.404e−3 0.9735
Variance upload 0.129 0.745e−3 0.0376

fitted exponential model are given in Table II where R2 is
the coefficient of determination to show the goodness of fit.
As we expected, this exponential model is not a best fit for the
variance of upload bandwidth, as it can be seen in Fig. 9(b).
However, it is the closest fit among the extensive parameter
and the model fitting studies that we performed; thus, we keep
this simple model as the most effective and study its accuracy
in next section.

(a) Mean (b) Variance

Fig. 8. Fitting of the mean and variance for download bandwidth.

(a) Mean (b) Variance

Fig. 9. Fitting of the mean and variance for upload bandwidth.

IV. MODEL VALIDATION

In the following, we present the validation of the proposed
statistical models. We use two methods to validate the models:
a model-based and a simulation-based validation.

A. Model-based Validation

For the validation, we utilize the exponential model given
in Eq. 1 and the values in Table II to find the mean and
variance of the host bandwidth. Then we generate a number
of hosts with the download and upload bandwidth using
the Log-normal distribution, given the calculated mean and
variance. We predict the host bandwidth for May 2013 and
plot the cumulative distribution function (CDF) of download

TABLE III
INPUT PARAMETERS FOR THE SIMULATION.

Parameter Distribution
Download size Uniform (12MB,18MB)
Upload size Uniform (0.5MB,1.2MB)
Job runtime Normal (µ = 1.2hrs, σ = 0.9hrs)

and upload rates against the real data in Fig. 10. As previously
mentioned, the data for Year 2013 is not included in the
modeling, so these figures reveal that the proposed model can
predict the host bandwidth with a good degree of accuracy.

As one can see in Fig. 10(a), the model for download
bandwidth has higher accuracy than the model for upload
bandwidth. The average relative error for the download and
upload bandwidth are about 3% and 15%, respectively. The
main reason for this discrepancy in the model accuracy is
the complex behavior of the upload variance and the low
accuracy of the exponential model as listed in Table II. This
observation is consistent for other data and dates. The accuracy
of the proposed model for the upload bandwidth could be
improved at the cost of using a more complex model (e.g.,
two exponential components model). This approach is part of
our future work.

B. Simulation-based Validation

Since most of the Big Data applications focus on utilizing
bandwidth to transfer data for processing using Internet-based
computing systems, we design a simulation to evaluate a
similar scenario. As we mentioned earlier, we have a client-
server system where the server dispatches the jobs to hosts and
then waits for the results. Hosts must download the input files
and upload the results after job completion. In this case, the
host service time is defined as the summation of the time for
download, data processing, and upload the results. So if we
consider jobs as the incoming requests, then each host provides
a service with a variable service time. This behavior can be
simulated in a queuing system where we have two types of
service time generated by model or real traces. Hence, we can
use M/Model/1 and M/Trace/1 queuing systems for model
evaluation. This technique has been used for the similar model
validation [11].

In order to simulate the two queuing systems, we imple-
mented a discrete-event simulator using the Objective Modular
Network Testbed in C++ (OMNeT++) [12]. The simulation
parameters are given in Table III, which have been extracted
from a real application [5]. We used the generated download
and upload bandwidths for a set of hosts in May 2013 from
Section IV-A to calculate the service time of M/Model/1
queue. The same date is also used to generate the service
time of M/Trace/1 from the real dataset. We consider the
exponential distribution for the inter-arrival time of input jobs
to focus only on the target performance metric, which is the
response time of the queue.

The simulation results for the response time of the queues
while using the proposed model or the real traces as the
service time are depicted in Fig. 11. As one can see, the



(a) Download bandwidth (b) Upload bandwidth

Fig. 10. The CDF of the predicted and real download and upload bandwidth for May 2013.

proposed model shows a close fit to the real data. We also
observe the similar results when we used different dates. The
simulation-based validation confirms the high accuracy of the
proposed model and shows that this model is a good candidate
in analyzing the bandwidth requirements for the Big Data
applications.

Fig. 11. Simulation-based validation.

V. CONCLUSIONS

In this paper, we present a general method to analyze and
model the host bandwidths of volunteer computing projects;
we use real traces of the Docking@Home project from
280,000 hosts over the Internet in a 5-year period. In our
analysis we do not observe any obvious correlation in the
host bandwidth. We successfully mimic the hosts bandwidth
(download and upload) using the Log-normal distribution in
combination of an exponential model to predict the mean and
variance. Validation results in which we first compare the
predicted download and upload bandwidths and then predict
the host service times versus real traces confirm the high
accuracy of our model. Thus the model is a good candidate
to analyze the bandwidth requirements for the Big Data
applications. Work in progress includes the study of scenarios
in which our model is used for the prediction of in-situ and

in-transit analysis of data generated in Docking@Home and
other volunteer computing projects.
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